Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4
Case 2: 7 1 6
1 #include<stdio.h> 2 #include<string.h> 3 #include<algorithm> 4 using namespace std; 5 int main(){ 6 int t,n,a[100010],cnt=1,dp[100010]; 7 scanf("%d",&t); 8 int q=t; 9 while(t--){ 10 scanf("%d",&n); 11 memset(dp,0,sizeof(dp)); 12 for(int i=1;i<=n;i++){ 13 scanf("%d",&a[i]); 14 dp[i]=a[i]; 15 } 16 int maxx=dp[1]; 17 int t=1; 18 for(int i=1;i<=n;i++){ 19 dp[i]=max(dp[i],dp[i-1]+a[i]); 20 if(dp[i]>maxx){ 21 maxx=dp[i]; 22 t=i; //记录最长子序列的末位置 23 } 24 } 25 int sum=0,tt; 26 for(int i=t;i>=1;i--){ 27 sum+=a[i]; 28 if(sum==maxx){ //找最长子序列的初始位置 29 tt=i; 30 } 31 } 32 printf("Case %d: ",cnt++); 33 printf("%d %d %d ",maxx,tt,t); 34 if(q!=(cnt-1)) 35 printf(" "); 36 } 37 }