- 该查找函数的方便时因为在查找中只有加减运算,计算中会节约很多时间
- 思路是斐波那契数组[fib]是作为下标来进行查找的,确定下标k后需要扩容目标数组[temp]的长度和确定的fib[k]一样长
- 然后所查找的位置[mid]:temp的最低+fib最高-1
- 大于的话:temp的最高位置=mid-1,k--
- 小于的话:temp的最低位置=mid+1,k-2
- 找到的话:return (mid <= high)?mid:high
- 没有找到返回-1
public class TestObject { public static void main(String[] args) { int[] arr = {1,3,5,6,8,10,11,15,66,100}; int i = fibonacciSearch(arr, 11); System.out.println(i); } /** * 得到斐波那契数列 * @return */ public static int[] fib() { int[] f = new int[20]; f[0] = 1; f[1] = 1; for (int i = 2; i < f.length; i++) { f[i] = f[i - 1] + f[i - 2]; } return f; } /** * 斐波那契查找算法 * @param arr * @param value * @return */ public static int fibonacciSearch(int[] arr, int value) { //查找界限 int low = 0; int high = arr.length - 1; //存放分割数的下标和值 int k = 0; int mid = 0; //得到斐波那契数列 int[] fib = fib(); //获得k分割数的下标 while (high > fib[k] - 1) { k++; } //对数组扩容 int[] temp = Arrays.copyOf(arr, fib[k]); //填充扩容数组 for (int i = high + 1; i < temp.length; i++) { temp[i] = arr[high]; } //当左界大于等于右界时退出 while (low <= high) { mid = low + fib[k - 1] - 1; if (value < temp[mid]) { //查找的数在左边 high = mid - 1; //f[k] = f[k-1] + f[k-2],位于左半段时,下次判定mid时k应该-1 k--; } else if (value > temp[mid]) { //查找的数在右边 low = mid + 1; //f[k] = f[k-1] + f[k-2],位于右半段时,下次判定mid时k应该-2 k -= 2; } else { //找到了 if (mid <= high) { return mid; } else { //当mid位于扩容的数组中时,返回最大值 return high; } } } //没找到 return -1; } }