zoukankan      html  css  js  c++  java
  • 算法训练 2的次幂表示


                                                                                                                算法训练 2的次幂表示  
    时间限制:1.0s   内存限制:512.0MB
        
    问题描述
      任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
      将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
      现在约定幂次用括号来表示,即a^b表示为a(b)
      此时,137可表示为:2(7)+2(3)+2(0)
      进一步:7=2^2+2+2^0 (2^1用2表示)
      3=2+2^0 
      所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
      又如:1315=2^10+2^8+2^5+2+1
      所以1315最后可表示为:
      2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
    输入格式
      正整数(1<=n<=20000)
    输出格式
      符合约定的n的0,2表示(在表示中不能有空格)
    样例输入
    137
    样例输出
    2(2(2)+2+2(0))+2(2+2(0))+2(0)
    样例输入
    1315
    样例输出
    2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

    提示
    用递归实现会比较简单,可以一边递归一边输出
    #include<iostream>
    #include<cstdio>
    using namespace std;
    void fun(int n)
    {
        int a[30];
        int num=0,r;
         int i=0;
        while(n)
        {
             r=n%2;
             if(r==1)
               a[num++]=i;//1的位置。
            i++;
            n=n/2;
        }
        for(i=num-1;i>=0;i--)
        {
            if(a[i]==0)
               {
                    printf("2(0)");
                   
               }
            else if(a[i]==1)
            {
                 printf("2");
               
            }
            else if(a[i]==2)
            {
               printf("2(2)");
              
            }
            else
            {
                printf("2(");
               fun(a[i]);
               printf(")");
            }
            if(i!=0)
               printf("+");
    
        }
    }
    int main()
    {
        int n;
        scanf("%d",&n);
        fun(n);
        return 0;
    }
  • 相关阅读:
    numpy排序函数:sort、argsort、lexsort、partition、sorted
    转载一份分类、回归、排序的评价指标
    python类的全面介绍
    好文推荐:转载一篇别人kaggle的经验分享
    实现ls -l
    C命令行参数
    C语言调用汇编
    汇编调用C程序
    linux 进程通信 :流套接字
    linux进程通信:消息队列
  • 原文地址:https://www.cnblogs.com/cancangood/p/4340390.html
Copyright © 2011-2022 走看看