zoukankan      html  css  js  c++  java
  • Codeforces 687B. Remainders Game[剩余]

    B. Remainders Game
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Today Pari and Arya are playing a game called Remainders.

    Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?

    Note, that  means the remainder of x after dividing it by y.

    Input

    The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

    The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

    Output

    Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

    Examples
    input
    4 5
    2 3 5 12
    output
    Yes
    input
    2 7
    2 3
    output
    No
    Note

    In the first sample, Arya can understand  because 5 is one of the ancient numbers.

    In the second sample, Arya can't be sure what  is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.


    题意:有数字x和k,x未知;知道x mod ci的结果,问x mod k是否唯一


    官方题解:

    Hint

    Assume the answer of a test is No. There must exist a pair of integers x1 and x2 such that both of them have the same remainders after dividing by any ci, but they differ in remainders after dividing by k. Find more facts about x1 and x2!

    Solution

    Consider the x1 and x2 from the hint part. We have x1 - x2 ≡ 0 () for each 1 ≤ i ≤ n

    So:

    We also have  (). As a result:

    We've found a necessary condition. And I have to tell you it's also sufficient!

    Assume , we are going to prove there exists x1, x2 such that x1 - x2 ≡ 0 () (for each 1 ≤ i ≤ n), and  (). 

    A possible solution is x1 = lcm(c1, c2, ..., cn) and x2 = 2 × lcm(c1, c2, ..., cn), so the sufficiency is also proved.

    So you have to check if lcm(c1, c2, ..., cn) is divisible by k, which could be done using prime factorization of k and ci values.

    For each integer x smaller than MAXC, find it's greatest prime divisor gpdx using sieve of Eratosthenes in 

    Then using gpd array, you can write the value of each coin as p1q1p2q2...pmqm where pi is a prime integer and 1 ≤ qi holds. This could be done in  by moving from ci to  and adding gpdci to the answer. And you can factorize k by the same way. Now for every prime p that , see if there exists any coin i that the power of p in the factorization of ci is not smaller than the power of p in the factorization of k.

    Complexity is .


    题解前一部分比较好,后面还用筛法太扯了,质因数分解不用判质数

    假设有两个x1和x2,如果x mod k不唯一的话则x1和x2满足:

    x1-x2≡0(mod ci)----->lcm(c1,c2,..,cn)|x1-x2

    x1-x2!≡0(mod k)

    那么:

    最小的x1-x2就是lcm

    代入得lcm!≡0(mod k) 也就是k!|lcm

    质因数分解k判断每个质因子是否是某个ci 的约数,如果全是则可以整除,解唯一,一定可以猜出

    //
    //  main.cpp
    //  cf687b
    //
    //  Created by Candy on 9/20/16.
    //  Copyright © 2016 Candy. All rights reserved.
    //
    
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N=1e6+5;
    int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
        return x*f;
    }
    int n,k,c[N];
    bool check(int a){
        for(int i=1;i<=n;i++) if(c[i]%a==0) return 1;
        return 0;
    }
    int main(int argc, const char * argv[]) {
        n=read();k=read();
        for(int i=1;i<=n;i++) c[i]=read();
        for(int i=2;i<=k;i++){
            int a=1;
            while(k%i==0) a*=i,k/=i;
            if(a!=1&&!check(a)){printf("No");return 0;}
        }
        printf("Yes");
        return 0;
    }

     

  • 相关阅读:
    个体户、独资公司、有限公司、股份公司、控股公司、集团公司
    个人所得税
    移动端下拉滚动刷新
    web页面引入字体
    Flex布局
    NodeJS包管理器之Yarn
    域名、顶级域名、一级域名、二级域名、子域名
    JVM线程状态Running、Sleeping、Wait、Park、Monitor
    Java虚拟机解释器与JIT编译器
    ASP.NET之Cookie(坑爹的Response.Cookies.Remove)
  • 原文地址:https://www.cnblogs.com/candy99/p/5890778.html
Copyright © 2011-2022 走看看