zoukankan      html  css  js  c++  java
  • HDU5492 Find a path[DP 方差]

    Find a path

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1536    Accepted Submission(s): 673


    Problem Description
    Frog fell into a maze. This maze is a rectangle containing N rows and M columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step, he can go to either the grid right to his current location or the grid below his location. Formally, he can move from grid (x, y) to (x + 1, y) or (x, y +1), if the grid he wants to go exists.
    Frog is a perfectionist, so he'd like to find the most beautiful path. He defines the beauty of a path in the following way. Let’s denote the magic values along a path from (1, 1) to (n, m) as A1,A2,AN+M1, and Aavg is the average value of all Ai. The beauty of the path is (N+M1) multiplies the variance of the values:(N+M1)N+M1i=1(AiAavg)2
    In Frog's opinion, the smaller, the better. A path with smaller beauty value is more beautiful. He asks you to help him find the most beautiful path.  
     
    Input
    The first line of input contains a number T indicating the number of test cases (T50).
    Each test case starts with a line containing two integers N and M (1N,M30). Each of the next N lines contains M non-negative integers, indicating the magic values. The magic values are no greater than 30.
     
    Output
    For each test case, output a single line consisting of “Case #X: Y”. X is the test case number starting from 1. Y is the minimum beauty value.
     
    Sample Input
    1 2 2 1 2 3 4
     
    Sample Output
    Case #1: 14
     
    Source

    题意:(1,1)到(n,m)向右向下的最小方差路径

    把方差的式子化简推理,得到
    (n+m-1)*Σai^2-(Σai)^2   i belong path
    注意两者平方位置演算时写清了
    f[i][j][k]表示到(i,j)和为k的最小平方和,递推就行了
    //
    //  main.cpp
    //  hdu5492
    //
    //  Created by Candy on 10/2/16.
    //  Copyright © 2016 Candy. All rights reserved.
    //
    
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <set>
    using namespace std;
    const int N=35,INF=1e9;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x;
    }
    int T,n,m,l,a[N][N],f[N][N][N*2*30];
    int dp(){
        memset(f,127,sizeof(f));
        f[1][1][a[1][1]]=a[1][1]*a[1][1];
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                for(int k=0;k<=l*30;k++)
                    if(f[i][j][k]<=INF){
                        int x=i+1,y=j,w=a[x][y];
                        f[x][y][k+w]=min(f[x][y][k+w],f[i][j][k]+w*w);
                        x=i;y=j+1;w=a[x][y];
                        f[x][y][k+w]=min(f[x][y][k+w],f[i][j][k]+w*w);
                    }
        int ans=INF;
        for(int k=0;k<=l*30;k++)
            if(f[n][m][k]<INF)
                ans=min(ans,l*f[n][m][k]-k*k);
        return ans;
    }
    int main(int argc, const char * argv[]) {
        T=read();int cas=0;
        while(T--){
            n=read();m=read();l=n+m-1;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++) a[i][j]=read();
            printf("Case #%d: %d
    ",++cas,dp());
        }
    
        return 0;
    }
     
  • 相关阅读:
    第1条:考虑用静态工厂方法代替构造器
    代理模式(Proxy Pattern)
    out 和 ref 参数修饰符
    SQL Server 性能调优(一)——从等待状态判断系统资源瓶颈【转】
    Windows下获取Dump文件以及进程下各线程调用栈的方法总结(转)
    sql server内置函数
    ORA-16019 和 ORA-16018 错误的处理方法(转)
    marge into操作
    LogMiner配置使用手册
    课后作业
  • 原文地址:https://www.cnblogs.com/candy99/p/5927481.html
Copyright © 2011-2022 走看看