zoukankan      html  css  js  c++  java
  • POJ3070 Fibonacci[矩阵乘法]【学习笔记】

    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 13677   Accepted: 9697

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source


    矩阵乘法的应用
    一个有趣的理解:
    结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和
     
    白书上的一句:
    把一个向量v变成另一个向量v1,并且v1的每一个分量都是v各个分量的线性组合,考虑使用矩阵乘法
    对于斐波那契数列,构造矩阵
    1 1
    1 0
    然后
    让矩阵
    A     1 1
    B     1 0
    相乘,就是得到
    A+B
    A
    就是斐波那契数列啊
    快速幂来优化到logn
     
    遇到一个n很大的DP/递推关系,都可以考虑用这种方法
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int MOD=1e4;
    typedef long long ll;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    int n;
    struct mat{
        int r,c;
        int m[3][3];
        mat(){r=2;c=2;memset(m,0,sizeof(m));}
    }im,f;
    mat mult(mat x,mat y){
        mat t;
        for(int i=1;i<=x.r;i++)
            for(int k=1;k<=x.c;k++) if(x.m[i][k])
                for(int j=1;j<=y.c;j++)
                    t.m[i][j]=(t.m[i][j]+x.m[i][k]*y.m[k][j]%MOD)%MOD;
        return t;
    }
    void init(){
        for(int i=1;i<=im.c;i++)
            for(int j=1;j<=im.r;j++)
                if(i==j) im.m[i][j]=1;
        f.m[1][1]=1;f.m[1][2]=1;
        f.m[2][1]=1;f.m[2][2]=0;
    }
    int main(){
        init();
        while((n=read())!=-1){
            mat ans=im,t=f;
            for(;n;n>>=1,t=mult(t,t))
                if(n&1) ans=mult(ans,t);
            printf("%d
    ",ans.m[1][2]); 
        }
    }
  • 相关阅读:
    BGP deterministic-med & compare-med
    BGP Always-compare-med & Deterministic-med
    BGP实验 MED , Cyrus
    BGP Lab AS-path prepend last-as
    详解C/C++中volatile关键字
    38、hashtable中解决冲突有哪些方法?
    37、STL中unordered_map和map的区别和应用场景
    36、set和map的区别,multimap和multiset的区别
    35、STL中map的实现
    34、STL中set的实现?
  • 原文地址:https://www.cnblogs.com/candy99/p/5990782.html
Copyright © 2011-2022 走看看