zoukankan      html  css  js  c++  java
  • UVA11021 Tribles[离散概率 DP]

    UVA - 11021

    GRAVITATION, n. “The tendency of all bodies to approach one another with a strength proportion to the quantity of matter they contain – the quantity of matter they contain being ascertained by the strength of their tendency to approach one another. This is a lovely and edifying illustration of how science, having made A the proof of B, makes B the proof of A.”

                                                                           Ambrose Bierce
    

    You have a population of k Tribbles. This particular species of Tribbles live for exactly one day and then die. Just before death, a single Tribble has the probability Pi of giving birth to i more Tribbles. What is the probability that after m generations, every Tribble will be dead?

    Input

    The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containingn(1≤n≤1000),k(0≤k≤1000)andm(0≤m≤1000). Thenextnlineswillgivethe probabilities P0, P1, . . . , Pn−1.

    Output

    For each test case, output one line containing ‘Case #x:’ followed by the answer, correct up to an absolute or relative error of 10−6.

    Sample Input

    4 3 1 1 0.33 0.34 0.33 3 1 2 0.33 0.34 0.33 3 1 2 0.5 0.0 0.5 4 2 2 0.5 0.0 0.0 0.5 

    Sample Output

    Case #1: 0.3300000
    Case #2: 0.4781370
    Case #3: 0.6250000
    Case #4: 0.3164062


    每只麻球相互独立,求一只就可以了
    f[i]表示i天后1只麻球及后代全死亡的概率
    f[i]=p[0]+p[1]*f[i-1]+p[2]*f[i-1]^2+........
    边界f[0]=0
    //
    //  main.cpp
    //  uva11021
    //
    //  Created by Candy on 26/10/2016.
    //  Copyright © 2016 Candy. All rights reserved.
    //
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int N=1005;
    int T,n,m,k;
    double f[N],p[N];
    inline double fp(double a,int b){
        double ans=1.0;
        for(;b;b>>=1,a*=a)
            if(b&1) ans*=a;
        return ans;
    }
    void dp(){
        f[0]=0;
        for(int i=1;i<=m;i++){
            f[i]=p[0];
            for(int j=1;j<n;j++) f[i]+=p[j]*fp(f[i-1],j);
        }
    }
    int main(int argc, const char * argv[]) {
        scanf("%d",&T);
        for(int cas=1;cas<=T;cas++){
            scanf("%d%d%d",&n,&k,&m);
            for(int i=0;i<n;i++) scanf("%lf",&p[i]);
            dp();
            printf("Case #%d: %.7lf
    ",cas,fp(f[m],k));
        }
        
        return 0;
    }



  • 相关阅读:
    基础抽象代数
    斜堆
    WC2018
    WC2019
    有向图上不相交路径计数
    生成树计数
    Pr&#252;fer序列
    反演
    1.1 Linux中的进程 --fork、孤儿进程、僵尸进程、文件共享分析
    Python程序的执行过程 解释型语言和编译型语言
  • 原文地址:https://www.cnblogs.com/candy99/p/6002296.html
Copyright © 2011-2022 走看看