zoukankan      html  css  js  c++  java
  • POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group
    Time Limit: 2000MS   Memory Limit: 131072K
    Total Submissions: 8807   Accepted: 2875

    Description

    Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

    Input

    1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

    2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, j ≤ n) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

    Output

    For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

    Sample Input

    10 10
    0 1 2
    1 4
    0 3 4
    1 2
    0 5 6
    1 1
    0 7 8
    1 1
    0 9 10
    1 1

    Sample Output

    1
    2
    2
    2
    2

    Hint

    When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

    Source


    并查集维护连通分量大小,树状数组求cc中第k大值

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int N=2e5+5;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    int n,m,op,x,y,k;
    int fa[N],size[N],tot=0;
    inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
    
    int c[N];
    inline int lowbit(int x){return x&-x;}
    inline void add(int p,int v){
        for(;p<=n;p+=lowbit(p)) c[p]+=v;
    }
    inline int sum(int p){
        int res=0;
        for(;p>0;p-=lowbit(p)) res+=c[p];
        return res;
    }
    inline int kth(int k){
        int x=0,cnt=0;
        for(int i=16;i>=0;i--){
            x+=(1<<i);
            if(x>=n||cnt+c[x]>=k) x-=(1<<i);
            else cnt+=c[x];
        }
        return x+1;
    }
    
    int main(){
        n=read();m=read();
        for(int i=1;i<=n;i++) fa[i]=i,size[i]=1,tot++;
        add(1,n);
        for(int i=1;i<=m;i++){
            op=read();
            if(!op){
                x=read();y=read();
                int f1=find(x),f2=find(y);
                if(f1!=f2){
                    fa[f1]=f2;
                    add(size[f1],-1);
                    add(size[f2],-1);
                    size[f2]+=size[f1];
                    add(size[f2],1);
                    tot--;
                }
            //    printf("%d %d %d %d
    ",f1,f2,size[f1],size[f2]);
            }else{
                k=tot-read()+1;//printf("k %d
    ",k);
                printf("%d
    ",kth(k));
            }
        }
    }

    当然treap也可以 注意是第k大

    //
    //  main.cpp
    //  poj2985_treap
    //
    //  Created by Candy on 27/11/2016.
    //  Copyright © 2016 Candy. All rights reserved.
    //
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    #define lc t[x].l
    #define rc t[x].r
    const int N=2e5+5;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    int n,m,op,x,y,k;
    int fa[N],size[N];
    inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
    struct node{
        int l,r,v,w,rnd,size;
    }t[N];
    int cnt,root;
    inline void update(int x){t[x].size=t[lc].size+t[rc].size+t[x].w;}
    inline void rturn(int &x){
        int c=lc;lc=t[c].r;t[c].r=x;
        t[c].size=t[x].size;update(x);x=c;
    }
    inline void lturn(int &x){
        int c=rc;rc=t[c].l;t[c].l=x;
        t[c].size=t[x].size;update(x);x=c;
    }
    void ins(int &x,int v){//printf("ins %d %d
    ",x,v);
        if(x==0){
            cnt++;x=cnt;
            t[cnt].l=t[cnt].r=0;t[cnt].w=t[cnt].size=1;
            t[cnt].v=v;t[cnt].rnd=rand();
        }else{
            t[x].size++;
            if(t[x].v==v) t[x].w++;
            else if(v<t[x].v){
                ins(lc,v);
                if(t[lc].rnd<t[x].rnd) rturn(x);
            }else{
                ins(rc,v);
                if(t[rc].rnd<t[x].rnd) lturn(x);
            }
        }
    }
    void del(int &x,int v){
        if(x==0) return;
        if(t[x].v==v){
            if(t[x].w>1){t[x].w--;t[x].size--;return;}
            if(lc*rc==0) x=lc+rc;
            else if(t[lc].rnd<t[rc].rnd) rturn(x),del(x,v);
            else lturn(x),del(x,v);
        }else{
            t[x].size--;
            if(v<t[x].v) del(lc,v);
            else del(rc,v);
        }
    }
    //int kth(int x,int k){
    //    if(x==0)return 0;
    //    if(k<=t[lc].size) return kth(lc,k);
    //    else if(k>t[lc].size+t[x].w) return kth(rc,k-t[lc].size-t[x].w);
    //    else return t[x].v;
    //}
    int kth(int x,int k){
        if(x==0) return 0;
        if(k<=t[rc].size) return kth(rc,k);
        else if(k>t[rc].size+t[x].w) return kth(lc,k-t[rc].size-t[x].w);
        else return t[x].v;
    }
    int main(){
        n=read();m=read();
        for(int i=1;i<=n;i++) fa[i]=i,size[i]=1;
        while(m--){
            op=read();
            if(!op){
                x=read();y=read();
                int f1=find(x),f2=find(y);
                if(f1!=f2){
                    fa[f1]=f2;
                    if(size[f1]!=1) del(root,size[f1]);
                    if(size[f2]!=1) del(root,size[f2]);
                    size[f2]+=size[f1];
                    ins(root,size[f2]);
                }
            }else{
                k=read();//printf("kth %d %d
    ",k,t[root].size);
                if(k>t[root].size) puts("1");
                else printf("%d
    ",kth(root,k));
            }
        }
    }
  • 相关阅读:
    Delphi中的操作技巧
    C#的排序算法以及随机产生不重复数字的几个Demo
    使用jquery弹窗动态选择脚本示例
    利用override多态原理实现对相似页面的后台代码的抽象,并实现动态GridView动态列数据绑定
    使用VS2010开发一个简单的自定义字段类型
    C#语言使用多态(接口与override) ——帮您剔除对面向对象多态性的疑惑
    探讨复杂linq之group by 和 join
    感悟从java到.NET开发快速入门总结
    使用控制台调试SharePoint出现的一些问题的解决方案
    论欧洲列强争霸霸主——欧洲杯冠军猜想
  • 原文地址:https://www.cnblogs.com/candy99/p/6067401.html
Copyright © 2011-2022 走看看