zoukankan      html  css  js  c++  java
  • CF380C. Sereja and Brackets[线段树 区间合并]

    C. Sereja and Brackets
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Sereja has a bracket sequence s1, s2, ..., sn, or, in other words, a string s of length n, consisting of characters "(" and ")".

    Sereja needs to answer m queries, each of them is described by two integers li, ri (1 ≤ li ≤ ri ≤ n). The answer to the i-th query is the length of the maximum correct bracket subsequence of sequence sli, sli + 1, ..., sri. Help Sereja answer all queries.

    You can find the definitions for a subsequence and a correct bracket sequence in the notes.

    Input

    The first line contains a sequence of characters s1, s2, ..., sn (1 ≤ n ≤ 106) without any spaces. Each character is either a "(" or a ")". The second line contains integer m (1 ≤ m ≤ 105) — the number of queries. Each of the next m lines contains a pair of integers. The i-th line contains integers li, ri (1 ≤ li ≤ ri ≤ n) — the description of the i-th query.

    Output

    Print the answer to each question on a single line. Print the answers in the order they go in the input.

    Examples
    input
    ())(())(())(
    7
    1 1
    2 3
    1 2
    1 12
    8 12
    5 11
    2 10
    output
    0
    0
    2
    10
    4
    6
    6
    Note

    subsequence of length |x| of string s = s1s2... s|s| (where |s| is the length of string s) is string x = sk1sk2... sk|x|(1 ≤ k1 < k2 < ... < k|x| ≤ |s|).

    correct bracket sequence is a bracket sequence that can be transformed into a correct aryphmetic expression by inserting characters "1" and "+" between the characters of the string. For example, bracket sequences "()()", "(())" are correct (the resulting expressions "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.

    For the third query required sequence will be «()».

    For the fourth query required sequence will be «()(())(())».


    一定要读懂题

    问的是匹配的括号子序列的最大长度

    其实也就是最多有几对匹配*2


    用线段树做

    We will support the segments tree. At each vertex will be stored:
    av — the maximum length of the bracket subsequence
    bv — how many there it open brackets that sequence doesn't contain
    cv — how many there it closed brackets that sequence doesn't contain
    If we want to combine two vertices with parameters (a1, b1, c1) and (a2, b2, c2), we can use the following rules:
    t = min(b1, c2)
    a = a1 + a2 + t
    b = b1 + b2 - t
    c = c1 + c2 - t

    读懂题就很明白了,就是个合并问题

    查询的时候可以像GSS1那样写qpre和qsuf,但这次采用一个新方法,merge和query返回节点,这样方便好多

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define m ((l+r)>>1)
    #define lson o<<1,l,m
    #define rson o<<1|1,m+1,r
    #define lc o<<1
    #define rc o<<1|1
    using namespace std;
    typedef long long ll;
    const int N=1e6+5,INF=2e9+5;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    char s[N];
    int q,ql,qr;
    struct node{
        int a,b,c;
        node():a(0),b(0),c(0){}
    }t[N<<2];
    
    inline node merge(node x,node y){
        node z;
        int t=min(x.b,y.c);
        z.a=x.a+y.a+t;
        z.b=x.b+y.b-t;
        z.c=x.c+y.c-t;
        //printf("merge %d %d %d
    ",z.a,z.b,z.c);
        return z;
    }
    void build(int o,int l,int r){
        if(l==r){
            if(s[l]=='(') t[o].b=1;
            else t[o].c=1;
        }else{
            build(lson);
            build(rson);
            t[o]=merge(t[lc],t[rc]);
        }
    }
    node query(int o,int l,int r,int ql,int qr){
        if(ql<=l&&r<=qr) return t[o];
        else{
            node ans;
            if(ql<=m) ans=merge(ans,query(lson,ql,qr));
            if(m<qr) ans=merge(ans,query(rson,ql,qr));
            return ans;
        }
    }
    int main(){
        scanf("%s",s+1);
        q=read();
        int n=strlen(s+1);
        build(1,1,n);
        for(int i=1;i<=q;i++){
            ql=read();qr=read();
            printf("%d
    ",query(1,1,n,ql,qr).a*2);
        }
    }
  • 相关阅读:
    linux
    day01-02
    测试基础
    cookie session
    多表表与表关系 增删改查 admin
    连接数据库 创建表 字段和参数 增删改查
    LeetCode OJ:Triangle(三角形)
    LeetCode OJ:Unique Paths II(唯一路径II)
    LeetCode OJ:Unique Paths(唯一路径)
    使用双栈实现一个队列
  • 原文地址:https://www.cnblogs.com/candy99/p/6068561.html
Copyright © 2011-2022 走看看