zoukankan      html  css  js  c++  java
  • POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 22088   Accepted: 11155

    Description

    On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

    Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

    You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

    Input

    There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

    Output

    For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

    Sample Input

    2 2
    .m
    H.
    5 5
    HH..m
    .....
    .....
    .....
    mm..H
    7 8
    ...H....
    ...H....
    ...H....
    mmmHmmmm
    ...H....
    ...H....
    ...H....
    0 0
    

    Sample Output

    2
    10
    28
    

    Source


    每个人和每个房子连边,二分图最大权匹配
    用spfa费用流求解(或者KM)
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    typedef long long ll;
    const int N=5005,M=1e6+5,INF=1e9;
    int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
        return x*f;
    }
    int n,m,s,t,n1,n2;
    char ss[105];
    struct data{
        int x,y;
    }a[N],b[N];
    inline int dis(data &a,data &b){return abs(a.x-b.x)+abs(a.y-b.y);}
    
    struct edge{
        int v,ne,c,f,w;
    }e[M<<1];
    int cnt,h[N];
    inline void ins(int u,int v,int c,int w){
        cnt++;
        e[cnt].v=v;e[cnt].c=c;e[cnt].f=0;e[cnt].w=w;
        e[cnt].ne=h[u];h[u]=cnt;
        cnt++;
        e[cnt].v=u;e[cnt].c=0;e[cnt].f=0;e[cnt].w=-w;
        e[cnt].ne=h[v];h[v]=cnt;
    }
    void build(){
        cnt=0;
        memset(h,0,sizeof(h));
        s=0;t=n1+n2+1;
        for(int i=1;i<=n1;i++)
            for(int j=1;j<=n2;j++) ins(i,n1+j,1,dis(a[i],b[j]));
        for(int i=1;i<=n1;i++) ins(s,i,1,0);
        for(int i=1;i<=n2;i++) ins(n1+i,t,1,0);
    }
    int d[N],q[N],head,tail,inq[N],pre[N],pos[N];
    inline void lop(int &x){if(x==N)x=1;}
    bool spfa(){
        memset(d,127,sizeof(d));
        memset(inq,0,sizeof(inq));
        head=tail=1;
        d[s]=0;inq[s]=1;q[tail++]=s;
        pre[t]=-1;
        while(head!=tail){
            int u=q[head++];inq[u]=0;lop(head);
            for(int i=h[u];i;i=e[i].ne){
                int v=e[i].v,w=e[i].w;
                if(d[v]>d[u]+w&&e[i].c>e[i].f){
                    d[v]=d[u]+w;
                    pre[v]=u;pos[v]=i;
                    if(!inq[v])q[tail++]=v,inq[v]=1,lop(tail); 
                }
            }
        }
        return pre[t]!=-1;
    }
    int mcmf(){
        int flow=0,cost=0;
        while(spfa()){
            int f=INF;
            for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
            flow+=f;cost+=d[t]*f;
            for(int i=t;i!=s;i=pre[i]){
                e[pos[i]].f+=f;
                e[((pos[i]-1)^1)+1].f-=f;
            }
        }
        return cost;
    }
    int main(int argc, const char * argv[]){
        while(true){
            n1=n2=0;
            n=read();m=read();
            if(n==0&&m==0) break;
            for(int i=1;i<=n;i++){
                scanf("%s",ss+1);
                for(int j=1;j<=m;j++){
                    if(ss[j]=='H') a[++n1]=(data){i,j};
                    if(ss[j]=='m') b[++n2]=(data){i,j};
                }
            }
            build();
            printf("%d
    ",mcmf());
        }
    }
     
     
     
     
  • 相关阅读:
    【BigData】Java基础_ArrayList的使用
    【BigData】Java基础_构造方法的使用
    【BigData】Java基础_类和对象的基本使用
    【BigData】Java基础_冒泡排序
    【BigData】Java基础_数组
    【BigData】Java基础_循环
    【BigData】Java基础_终端输入2个数字并求和
    Navicat自动断开连接处理方式
    名字修饰约定extern "C"与extern "C++"浅析
    qt study 元对象,属性和反射编程
  • 原文地址:https://www.cnblogs.com/candy99/p/6127049.html
Copyright © 2011-2022 走看看