zoukankan      html  css  js  c++  java
  • BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划

    题意:n个点组成的无向连通图个数


    以前做过,今天复习一下


    (f[n])为n个点的无向连通图个数

    n个点的完全图个数为(2^{inom{n}{2}})

    和Bell数的推导很类似,枚举第一个cc的点的个数

    [2^{inom{n}{2}} = sum_{i=1}^n inom{n-1}{i-1} f(i) 2^{inom{n-i}{2}} ]

    整理后

    [frac{2^{inom{n}{2}}}{(n-1)!} = sum_{i=1}^n frac{f(i)}{(i-1)!}frac{2^{inom{n-i}{2}}}{(n-i)!} ]

    这是卷积的形式

    [C(x) = A(x)B(x) ightarrow A(x) = C(x)B^{-1}(x) ]

    多项式求逆就可做了

    注意(b_0=1)


    其实就是EGP求ln......

    简单的有标号集合计数

    [G(x) = sum_{ige 0} 2^{inom{i}{2}}frac{x^i}{i!} = sum_{i ge 0} frac{F(x)^i}{i!} = e^{F(x)}\ F(x) = ln G(x) = int frac{G'(x)}{G(x)}dx ]


    第一份是多项式求ln的代码,注意EGP要除以阶乘逆元
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    const int N = (1<<18) + 5;
    inline int read(){
    	char c=getchar();int x=0,f=1;
    	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    	while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    	return x*f;
    }
    
    int P = 1004535809, inv2 = (P+1)/2;
    inline int Pow(ll a, int b) {
    	ll ans = 1;
    	for(; b; b>>=1, a=a*a%P)
    		if(b&1) ans=ans*a%P;
    	return ans;
    }
    
    ll inv[N];
    namespace ntt {
    	int g = 3, rev[N];
    	void dft(int *a, int n, int flag) {
    		int k = 0; while((1<<k) < n) k++;
    		for(int i=0; i<n; i++) {
    			rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
    			if(i < rev[i]) swap(a[i], a[rev[i]]);
    		}
    		for(int l=2; l<=n; l<<=1) {
    			int m = l>>1, wn = Pow(g, flag == 1 ? (P-1)/l : P-1-(P-1)/l);
    			for(int *p = a; p != a+n; p += l)
    				for(int k=0, w=1; k<m; k++, w = (ll)w*wn %P) {
    					int t = (ll) w * p[k+m] %P, r = p[k];
    					p[k+m] = (r - t + P) %P;
    					p[k] = (r + t) %P;
    				}
    		}
    		if(flag == -1) {
    			ll inv = Pow(n, P-2);
    			for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
    		}
    	}
    	
    	void inverse(int *a, int *b, int l) {
    		static int t[N];
    		if(l == 1) {b[0] = Pow(a[0], P-2); return;}
    		inverse(a, b, l>>1);
    		int n = l<<1;
    		for(int i=0; i<l; i++) t[i] = a[i], t[i+l] = 0;
    		dft(t, n, 1); dft(b, n, 1);
    		for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
    		dft(b, n, -1); for(int i=l; i<n; i++) b[i] = 0;
    	}
    
    	void ln(int *a, int *b, int l) {
    		static int da[N], ia[N];
    		int n = l<<1;
    		for(int i=0; i<n; i++) da[i] = ia[i] = 0;
    		for(int i=0; i<l-1; i++) da[i] = (ll) (i+1) * a[i+1] %P;
    		inverse(a, ia, l);
    		dft(da, n, 1); dft(ia, n, 1);
    		for(int i=0; i<n; i++) b[i] = (ll) da[i] * ia[i] %P;
    		dft(b, n, -1);
    		for(int i=l-1; i>0; i--) b[i] = (ll) inv[i] * b[i-1] %P; b[0] = 0;
    		for(int i=l; i<n; i++) b[i] = 0;
    	}
    	
    }
    
    ll fac[N], facInv[N];
    int n, a[N], b[N];
    int main() {
    	freopen("in", "r", stdin);
    	n = read();
    	int len = 1;
    	while(len <= n) len <<= 1;
    	inv[1] = 1; fac[0] = facInv[0] = 1;
    	for(int i=1; i<=n; i++) {
    		if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
    		fac[i] = fac[i-1] * i %P;
    		facInv[i] = facInv[i-1] * inv[i] %P;
    	}
    	a[0] = 1;
    	for(int i=1; i<=n; i++) a[i] = Pow(2, (ll) i * (i - 1) /2 %(P-1)) * facInv[i] %P;
    	ntt::ln(a, b, len);
    	//for(int i=0; i<=n; i++) printf("%d ", b[i]); puts("");
    	int ans = b[n] * fac[n] %P;
    	printf("%d", ans);
    }
    
    
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    const int N = (1<<18) + 5;
    inline int read(){
    	char c=getchar();int x=0,f=1;
    	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    	while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    	return x*f;
    }
    
    ll P = 1004535809;
    inline ll Pow(ll a, int b) {
    	ll ans = 1;
    	for(; b; b>>=1, a=a*a%P)
    		if(b&1) ans=ans*a%P;
    	return ans;
    }
    inline void mod(int &x) {if(x>=P) x-=P; else if(x<0) x+=P;}
    namespace fnt {
    	int n, g=3, rev[N];
    	void dft(int *a, int n, int flag=1) {
    		for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
    
    		for(int l=2; l<=n; l<<=1) {
    			int m = l>>1;
    			ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
    			for(int *p=a; p!=a+n; p+=l) {
    				ll w = 1;
    				for(int k=0; k<m; k++) {
    					ll t = p[k+m] * w %P;
    					mod(p[k+m] = p[k] - t);
    					mod(p[k] = p[k] + t);
    					w = w * wn %P;
    				}
    			}
    		}
    		if(flag == -1) {
    			ll inv = Pow(n, P-2);
    			for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
    		}
    	}
    	int t[N];
    	void inverse(int *a, int *b, int l) { // mod x^l
    		if(l == 1) {b[0] = Pow(a[0], P-2); return;}
    		inverse(a, b, (l+1)>>1);
    		int n = 1, k = 0; while(n < l<<1) n<<=1, k++;
    		for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
    		for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
    		dft(t, n, 1); dft(b, n, 1);
    		for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
    		dft(b, n, -1);
    		for(int i=l; i<n; i++) b[i] = 0;
    	}
    
    	void mul(int *a, int *b, int l) {
    		int n = 1; while(n < l<<1) n<<=1;
    		dft(a, n, 1); dft(b, n, 1);
    		for(int i=0; i<n; i++) a[i] = (ll) a[i] * b[i] %P;
    		dft(a, n, -1);
    	}
    }
    
    int n, a[N], b[N], bi[N];
    ll inv[N], fac[N], facInv[N];
    int main() {
    	freopen("in", "r", stdin);
    	n=read();
    	inv[1] = 1; fac[0] = facInv[0] = 1;
    	for(int i=1; i<=n; i++) {
    		if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
    		fac[i] = fac[i-1] * i %P;
    		facInv[i] = facInv[i-1] * inv[i] %P;
    	}
    	for(int i=1; i<=n; i++) {
    		ll mi = Pow(2, (ll) i * (i-1) / 2 %(P-1));
    		a[i] = mi * facInv[i-1] %P;
    		b[i] = mi * facInv[i] %P;
    	}
    	b[0] = 1;
    
    	fnt::inverse(b, bi, n+1); 
    	fnt::mul(a, bi, n+1);
    	ll ans = a[n] * fac[n-1] %P;
    	printf("%lld", ans);
    }
    
    
  • 相关阅读:
    Ubuntu下Anaconda3的安装
    在Ubuntu上安装微信
    HTTP Response Code 中文详解
    urllib.parse.urldefrag(url)的解释
    极大似然估计
    多序列比对后可视化之texshade
    Musle比对软件(windows)
    windows本地blast
    绘制pathway富集散点图
    计算相关性系数
  • 原文地址:https://www.cnblogs.com/candy99/p/6736081.html
Copyright © 2011-2022 走看看