Super Rooks on Chessboard
题意:
超级车可以攻击行、列、主对角线3 个方向。
R * C 的棋盘上有N 个超级车,问不被攻击的格子总数。
行列好好做啊,就是不被攻击的行数*列数
减去主对角线的,就是不被攻击的行列中求(r - c = d)的三元组个数
考虑写出行和列生成函数 (A(x)=sum x^{r_i},B(x)=sum x^{-c_i}),乘起来就行了
可以乘上(x^c)来避免负指数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<17) + 5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
struct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int n, rev[N];
cd omega[N], omegaInv[N];
void init(int lim) {
n = 1; int k = 0; while(n < lim) n <<= 1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<n; i++) {
omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
omegaInv[i] = conj(omega[i]);
}
}
void dft(cd *a, int flag) {
cd *w = flag == 1 ? omega : omegaInv;
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
}
void mul(cd *a, cd *b) {
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, -1);
}
}
int r, c, n, m, R[N], C[N], D[N], x, y;
cd a[N], b[N];
int main() {
freopen("in", "r", stdin);
int T = read(), cas = 0;
while(T--) {
r = read(); c = read(); n = read(); m = max(r, c);
fft::init(m+m+1);
for(int i=0; i<fft::n; i++) a[i] = b[i] = cd(), R[i] = C[i] = D[i] = 0;
for(int i=1; i<=n; i++)
x=read(), y=read(), R[x] = 1, C[y] = 1, D[x+m-y] = 1;
int tr = 0, tc = 0;
for(int i=1; i<=r; i++) if(!R[i]) tr++, a[i].x = 1.0;
for(int i=1; i<=c; i++) if(!C[i]) tc++, b[m-i].x = 1.0;
ll ans = (ll) tr * tc, t = 0;
fft::mul(a, b);
for(int i=0; i <= m<<1; i++) if(D[i]) t += (ll) floor(a[i].x + 0.5);
printf("Case %d: %lld
", ++cas, ans - t);
}
}