zoukankan      html  css  js  c++  java
  • UVA 12633 Super Rooks on Chessboard [fft 生成函数]

    Super Rooks on Chessboard

    UVA - 12633

    题意:

    超级车可以攻击行、列、主对角线3 个方向。
    R * C 的棋盘上有N 个超级车,问不被攻击的格子总数。


    行列好好做啊,就是不被攻击的行数*列数

    减去主对角线的,就是不被攻击的行列中求(r - c = d)的三元组个数

    考虑写出行和列生成函数 (A(x)=sum x^{r_i},B(x)=sum x^{-c_i}),乘起来就行了

    可以乘上(x^c)来避免负指数

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    const int N = (1<<17) + 5;
    const double PI = acos(-1.0);
    inline int read() {
        char c=getchar(); int x=0,f=1;
        while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    
    struct meow{
        double x, y;
        meow(double a=0, double b=0):x(a), y(b){}
    };
    meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
    meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
    meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
    meow conj(meow a) {return meow(a.x, -a.y);}
    typedef meow cd;
    
    namespace fft {
    	int n, rev[N];
    	cd omega[N], omegaInv[N];
    	void init(int lim) {
    		n = 1; int k = 0; while(n < lim) n <<= 1, k++;
    		for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
    
    		for(int i=0; i<n; i++) {
    			omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
    			omegaInv[i] = conj(omega[i]);
    		}
    	}
    
    	void dft(cd *a, int flag) {
    		cd *w = flag == 1 ? omega : omegaInv;
    		for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
    		for(int l=2; l<=n; l<<=1) {
    			int m = l>>1;
    			for(cd *p = a; p != a+n; p += l) 
    				for(int k=0; k<m; k++) {
    					cd t = w[n/l*k] * p[k+m];
    					p[k+m] = p[k] - t;
    					p[k] = p[k] + t;
    				}
    		}
    		if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
    	}
    
    	void mul(cd *a, cd *b) {
    		dft(a, 1); dft(b, 1);
    		for(int i=0; i<n; i++) a[i] = a[i] * b[i];
    		dft(a, -1);
    	}
    }
    
    int r, c, n, m, R[N], C[N], D[N], x, y;
    cd a[N], b[N];
    int main() {
    	freopen("in", "r", stdin);
    	int T = read(), cas = 0;
    	while(T--) {
    		r = read(); c = read(); n = read(); m = max(r, c);
    		fft::init(m+m+1);
    		for(int i=0; i<fft::n; i++) a[i] = b[i] = cd(), R[i] = C[i] = D[i] = 0;
    		for(int i=1; i<=n; i++) 
    			x=read(), y=read(), R[x] = 1, C[y] = 1, D[x+m-y] = 1; 
    		int tr = 0, tc = 0;
    		for(int i=1; i<=r; i++) if(!R[i]) tr++, a[i].x = 1.0;
    		for(int i=1; i<=c; i++) if(!C[i]) tc++, b[m-i].x = 1.0;
    		ll ans = (ll) tr * tc, t = 0; 
    		fft::mul(a, b);
    		for(int i=0; i <= m<<1; i++) if(D[i]) t += (ll) floor(a[i].x + 0.5);
    		printf("Case %d: %lld
    ", ++cas, ans - t);
    	}
    }
    
    
  • 相关阅读:
    二SERVLET(2)
    一SERVLET (1)
    eclipse 恢复SVN无法还原的文件 svn使用了还原,但本地的没有提交找回没提交代码的方法
    oracle dual 表
    sql 自增字段的控制 hibernate注解的写法
    sql 集合运算
    join
    group by having where order by
    数据库oracle 驱动版本
    JFreeChart的使用
  • 原文地址:https://www.cnblogs.com/candy99/p/6749782.html
Copyright © 2011-2022 走看看