4826: [Hnoi2017]影魔
题意:一个排列,点对((i,j)),(p=max(i+1,j-1)),若(p<a_i,a_j)贡献p1,若(p)在(a_1,a_2)之间贡献p2. 多组询问一个区间的贡献和。
感觉和去年的题挺像的...然后(O(nsqrt{n}logn))莫队被卡成暴力...那个log还是主席树log... 并且调试时间比正解还长,不能更弱了
一个点对只有唯一的最大值(p)
可以按照(p)来分类统计
单调栈预处理(l_i, r_i)第一个大于的位置
((li, ri))这个点对贡献p1
((l_i, i+1...r_i-1))贡献p2
((l_i+1...i-1, r_i))也贡献p2
就是一个“单点加,线段加,矩形求和”的问题
可以分别对横坐标和纵坐标建两棵主席树,用区间加实现线段加
使用标记永久化比较简单
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2e5+5;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, Q, p1, p2, a[N], st[N], l[N], r[N];
struct lis {
struct meow{int l, r, val, ne;} e[N<<1];
int cnt, h[N];
inline void ins(int u, int l, int r, int v) {
e[++cnt] = (meow){l, r, v, h[u]}; h[u] = cnt;
}
} l1, l2;
#define rg(l, r, ql, qr) ( (r<qr ? r : qr) - (l>ql ? l : ql) + 1 )
struct ct {
struct meow{int l, r; ll add, sum;} t[N*40];
int sz, root[N];
void add(int &x, int l, int r, int ql, int qr, ll v) {
t[++sz] = t[x]; x = sz;
if(ql<=l && r<=qr) t[x].add += v, t[x].sum += (r-l+1) * v;
else {
t[x].sum += rg(l, r, ql, qr) * v;
int mid = (l+r)>>1;
if(ql <= mid) add(t[x].l, l, mid, ql, qr, v);
if(mid < qr) add(t[x].r, mid+1, r, ql, qr, v);
}
}
ll que(int x, int y, int l, int r, int ql, int qr) {
if(ql<=l && r<=qr) return t[y].sum - t[x].sum;
else {
ll ans = rg(l, r, ql, qr) * (t[y].add - t[x].add);
int mid = (l+r)>>1;
if(ql <= mid) ans += que(t[x].l, t[y].l, l, mid, ql, qr);
if(mid < qr) ans += que(t[x].r, t[y].r, mid+1, r, ql, qr);
return ans;
}
}
ll que(int l, int r) {
return que(root[l-1], root[r], 1, n, l, r);
}
void build(lis &li) {
for(int i=1; i<=n; i++) {
root[i] = root[i-1];
for(int p = li.h[i]; p; p = li.e[p].ne) {
int l = li.e[p].l, r = li.e[p].r, v = li.e[p].val;
add(root[i], 1, n, l, r, v);
}
}
}
} t1, t2;
void init() {
int top = 0;
for(int i=1; i<=n; i++) {
while(top && a[st[top]] < a[i]) r[st[top]] = i, top--;
l[i] = st[top];
st[++top] = i;
}
while(top) r[st[top]] = n+1, top--;
for(int i=1; i<=n; i++) {
if(l[i] > 0 && r[i] <= n) l1.ins(l[i], r[i], r[i], p1);
if(i+1 <= r[i]-1) l1.ins(l[i], i+1, r[i]-1, p2);
if(l[i]+1 <= i-1) l2.ins(r[i], l[i]+1, i-1, p2);
}
t1.build(l1); t2.build(l2);
}
int main() {
freopen("in", "r", stdin);
n=read(); Q=read(); p1=read(); p2=read();
for(int i=1; i<=n; i++) a[i] = read();
init();
for(int i=1; i<=Q; i++) {
int l = read(), r = read();
ll ans = t1.que(l, r) + t2.que(l, r) + (ll) (r-l) * p1;
printf("%lld
", ans);
}
}
下面是莫队
# pragma GCC optimize ("O2")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2e5+5;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, p1, p2, a[N], block, l[N], r[N], pos[N];
struct ct {
struct meow{int l, r, sum;} t[N*40];
int sz, root[N];
void insert(int &x, int l, int r, int p) {
t[++sz] = t[x]; x = sz;
t[x].sum++;
if(l == r) return;
int mid = (l+r)>>1;
if(p <= mid) insert(t[x].l, l, mid, p);
else insert(t[x].r, mid+1, r, p);
}
void build(int *a) {
for(int i=1; i<=n; i++) root[i] = root[i-1], insert(root[i], 1, n, a[i]);
}
int quer(int x, int y, int l, int r, int ql, int qr) {
if(ql<=l && r<=qr) return t[y].sum - t[x].sum;
else {
int mid = (l+r)>>1, ans=0;
if(ql <= mid) ans += quer(t[x].l, t[y].l, l, mid, ql, qr);
if(mid < qr) ans += quer(t[x].r, t[y].r, mid+1, r, ql, qr);
return ans;
}
}
int quer(int l, int r, int ql, int qr) {
if(l > r || ql > qr) return 0;
if(r < 1 || l > n) return 0;
if(l < 1) l = 1; if(r > n) r = n;
//printf("quer [%d, %d] [%d, %d]
", l, r, ql, qr);
return quer(root[l-1], root[r], 1, n, ql, qr);
}
} tl, tr;
int st[N], top;
void init() {
for(int i=1; i<=n; i++) {
while(top && a[ st[top] ] < a[i]) r[ st[top] ] = i-1, top--;
l[i] = st[top] + 1;
st[++top] = i;
}
while(top) r[ st[top--] ] = n;
tl.build(l); tr.build(r);
//for(int i=1; i<=n; i++) printf("%d [%d, %d]
", i, l[i], r[i]);
}
struct meow {
int l, r, id;
bool operator <(const meow &a) const {return pos[l] == pos[a.l] ? r < a.r : pos[l] < pos[a.l];}
} q[N];
ll now, ans[N];
int ql, qr;
inline void addr(int x) { //printf("
addr %d
", x);
int L = max(ql, l[x]-1);
now += tr.quer(L, qr, qr, n) * p1; //printf("__p1 %d
", a);
now += tr.quer(L, qr, 1, qr-1) * p2;
now += tr.quer(ql, l[x]-2, qr, n) * p2; //printf("__p2 %d
", b);
//printf("now %d
", now);
}
inline void delr(int x) {
int L = max(ql, l[x]-1);
now -= tr.quer(L, qr, qr, n) * p1;
now -= tr.quer(L, qr, 1, qr-1) * p2;
now -= tr.quer(ql, l[x]-2, qr, n) * p2;
}
inline void addl(int x) {
int R = min(r[x]+1, qr);
now += tl.quer(ql, R, 1, ql) * p1;
now += tl.quer(ql, R, ql+1, n) * p2;
now += tl.quer(r[x]+2, qr, 1, ql) * p2;
}
inline void dell(int x) { //printf("
---dell %d
", x);
int R = min(r[x]+1, qr);
now -= tl.quer(ql, R, 1, ql) * p1; //printf("__a %d
", a);
now -= tl.quer(ql, R, ql+1, n) * p2; //printf("__b %d
", b);
now -= tl.quer(r[x]+2, qr, 1, ql) * p2; //printf("__c %d
", c);
}
void modui() {
ql=1; qr=0;
for(int i=1; i<=m; i++) {
while(qr < q[i].r) addr(qr+1), qr++;
while(qr > q[i].r) qr--, delr(qr+1);
while(ql < q[i].l) ql++, dell(ql-1);
while(ql > q[i].l) addl(ql-1), ql--;
ans[ q[i].id ] = now;
}
}
int main() {
freopen("in", "r", stdin);
n=read(); m=read(); p1=read(); p2=read();
block = sqrt(n);
for(int i=1; i<=n; i++) a[i]=read(), pos[i] = (i-1)/block+1;
for(int i=1; i<=m; i++) q[i].l = read(), q[i].r = read(), q[i].id = i;
sort(q+1, q+1+m);
init();
modui();
for(int i=1; i<=m; i++) printf("%lld
", ans[i]);
}