zoukankan      html  css  js  c++  java
  • bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数

    题意:给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得

    (D=(A * B-C)* A^T)最大。其中A^T为A的转置。输出D。每个数非负。


    分析一下这个乘法的性质或者化简一下容易发现,(C_i)代价生效需要(A_i=1)(B_{ij})贡献生效需要(A_i =A_j=1)

    最小割

    我成功的把dinic里的括号打错了...gg

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    const int N=300005, M=2e6+5, INF = 1e9;
    inline int read() {
        char c=getchar(); int x=0,f=1;
        while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
        while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
        return x*f;
    }
    
    int n, b[505][505], c[505], sum;
    struct edge{int v, ne, c, f;} e[M];
    int cnt=1, h[N], s, t;
    inline void ins(int u, int v, int c) { 
    	e[++cnt] = (edge){v, h[u], c, 0}; h[u] = cnt;
    	e[++cnt] = (edge){u, h[v], 0, 0}; h[v] = cnt;
    }
    
    namespace mf {
    	int q[N], head, tail, vis[N], d[N];
    	bool bfs() {
    		memset(vis, 0, sizeof(vis));
    		head = tail = 1;
    		q[tail++] = s; d[s] = 0; vis[s] = 1;
    		while(head != tail) {
    			int u = q[head++]; 
    			for(int i=h[u];i;i=e[i].ne) 
    				if(!vis[e[i].v] && e[i].c > e[i].f) {
    					int v = e[i].v;
    					vis[v] = 1; d[v] = d[u]+1;
    					q[tail++] = v;
    					if(v == t) return true;
    				}
    		}
    		return false;
    	}
    	int cur[N];
    	int dfs(int u, int a) {
    		if(u == t || a == 0) return a;
    		int flow = 0, f;
    		for(int &i=cur[u];i;i=e[i].ne) 
    			if(d[e[i].v] == d[u]+1 && (f = dfs(e[i].v, min(a, e[i].c - e[i].f)) ) >0 ) {
    				flow += f;
    				e[i].f += f;
    				e[i^1].f -= f;
    				a -= f;
    				if(a == 0) break;
    			}
    		if(a) d[u] = -1;
    		return flow;
    	}
    	int dinic() {
    		int flow = 0;
    		while(bfs()) { 
    			for(int i=s; i<=t; i++) cur[i] = h[i];
    			flow += dfs(s, INF); 
    		}
    		return flow;
    	}
    }
    
    void build() {
    	s = 0; t = n + n*n + 1;
    	for(int i=1; i<=n; i++) ins(s, i, c[i]), ins(i, t, b[i][i]);
    	for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i != j) {
    		int id = i*n+j;
    		ins(i, id, INF); ins(j, id, INF); ins(id, t, b[i][j]);
    	}
    }
    
    int main() {
    	freopen("in", "r", stdin);
    	n = read();
    	for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) b[i][j] = read(), sum += b[i][j];
    	for(int i=1; i<=n; i++) c[i] = read();
    	build();
    	int ans = mf::dinic();
    	printf("%d
    ", sum - ans);
    }
    
    
  • 相关阅读:
    MySQL中tinytext、text、mediumtext和longtext详解
    端口冲突
    Form绑定
    Uri绑定
    只绑定Get参数
    Linux:Day4(上) 文件管理、管道
    selenium之frame
    selenium之选项卡管理
    Request
    爬虫常用库
  • 原文地址:https://www.cnblogs.com/candy99/p/6764762.html
Copyright © 2011-2022 走看看