zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences

    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7454    Accepted Submission(s): 2591


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2 4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  2768 2766 2769 2773 2772 
     
    #include<iostream>
    #include<cstdio> 
    #include<cstring>
    #include<algorithm>
    #define MAXN 100000+15
    using namespace std;
    int n,m,tot,tim,top,sumcol,ans,bns;
    int to[MAXN],from[MAXN],net[MAXN],x[MAXN],col[MAXN],into[MAXN],out[MAXN];
    int dfn[MAXN],low[MAXN],vis[MAXN],stack[MAXN],visstack[MAXN];
    void add(int u,int v){
        to[++tot]=v;x[tot]=u;net[tot]=from[u];from[u]=tot;
    }
    void tarjin(int now){
        low[now]=dfn[now]=++tim;
        stack[++top]=now;
        visstack[now]=1;
        vis[now]=1;
        for(int i=from[now];i;i=net[i])
            if(visstack[to[i]])
                low[now]=min(low[now],dfn[to[i]]);
            else if(!vis[to[i]]){
                tarjin(to[i]);
                low[now]=min(low[now],low[to[i]]);
            }
        if(dfn[now]==low[now]){
            sumcol++;
            col[now]=sumcol;
            while(stack[top]!=now){
                col[stack[top]]=sumcol;
                visstack[stack[top]]=0;
                top--;
            }
            visstack[now]=0;
            top--;
        } 
    }
    int T;
    int main(){
        cin>>T;
        while(T--){
            top=0;tot=0;sumcol=0;tim=0;
            ans=0;bns=0;
            memset(to,0,sizeof(to));
            memset(low,0,sizeof(low));
            memset(dfn,0,sizeof(dfn));
            memset(vis,0,sizeof(vis));
            memset(col,0,sizeof(col));
            memset(net,0,sizeof(net));
            memset(out,0,sizeof(out));
            memset(into,0,sizeof(into));
            memset(from,0,sizeof(from));
            memset(stack,0,sizeof(stack));
            memset(visstack,0,sizeof(visstack));
            cin>>n>>m;
            for(int i=1;i<=m;i++){
                int a,b;
                cin>>a>>b;
                add(a,b);
            }
            for(int i=1;i<=n;i++)
                if(!vis[i])    tarjin(i);
            if(sumcol==1){
                cout<<"0"<<endl;
                continue;
            }
            for(int i=1;i<=tot;i++)
                if(col[to[i]]!=col[x[i]]){
                    into[col[to[i]]]++;
                    out[col[x[i]]]++;
                }
            for(int i=1;i<=sumcol;i++){
                if(into[i]==0)    ans++;
                if(out[i]==0)    bns++;
            }
            cout<<max(ans,bns)<<endl;
        }
    }
    细雨斜风作晓寒。淡烟疏柳媚晴滩。入淮清洛渐漫漫。 雪沫乳花浮午盏,蓼茸蒿笋试春盘。人间有味是清欢。
  • 相关阅读:
    Linux XOR.DDoS样本取证特征与清除
    利用Volatility对Linux内存取证分析-常用命令翻译
    【黑客免杀攻防】读书笔记14
    CertUtil.exe被利用来下载恶意软件
    利用rundll32执行程序的函数执行程序
    揭秘Patchwork APT攻击-恶意软件样本BADNEWS
    【CTF MISC】pyc文件反编译到Python源码-2017世安杯CTF writeup详解
    [ 总结 ] 删除通过find查找到的文件
    [ 脚本 ] RHEL6.x 及Centos6.x 初始化脚本
    [ 手记 ] 联想rd650服务器整列及系统安装
  • 原文地址:https://www.cnblogs.com/cangT-Tlan/p/7400221.html
Copyright © 2011-2022 走看看