zoukankan      html  css  js  c++  java
  • HDU 2224 The shortest path

    The shortest path

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1507    Accepted Submission(s): 773

    Problem Description
    There are n points on the plane, Pi(xi, yi)(1 <= i <= n), and xi < xj (i<j). You begin at P1 and visit all points then back to P1. But there is a constraint: 
    Before you reach the rightmost point Pn, you can only visit the points those have the bigger x-coordinate value. For example, you are at Pi now, then you can only visit Pj(j > i). When you reach Pn, the rule is changed, from now on you can only visit the points those have the smaller x-coordinate value than the point you are in now, for example, you are at Pi now, then you can only visit Pj(j < i). And in the end you back to P1 and the tour is over.
    You should visit all points in this tour and you can visit every point only once.
     
    Input
    The input consists of multiple test cases. Each case begins with a line containing a positive integer n(2 <= n <= 200), means the number of points. Then following n lines each containing two positive integers Pi(xi, yi), indicating the coordinate of the i-th point in the plane.
     
    Output
    For each test case, output one line containing the shortest path to visit all the points with the rule mentioned above.The answer should accurate up to 2 decimal places.
     
    Sample Input
    3 1 1 2 3 3 1
     
    Sample Output
    6.47 Hint: The way 1 - 3 - 2 - 1 makes the shortest path.
     
    Author
    8600
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1217 2807 2544 1142 1548 
    思路:双调欧几里得旅行商板子。
    #include<iostream>
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int n;
    double dis[550][550],f[550][550];
    struct nond{
        int x,y;
    }v[550];
    int cmp(nond a,nond b){
        if(a.x==b.x)    return a.y<b.y;
        return a.x<b.x;
    }
    void pre(){
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++)
                dis[i][j]=dis[j][i]=sqrt((double)(v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
    }
    int main(){
        while(scanf("%d",&n)!=EOF){
            memset(dis,0,sizeof(dis));
            for(int i=1;i<=n;i++)
                scanf("%d%d",&v[i].x,&v[i].y);
            sort(v+1,v+1+n,cmp);
            pre();
            f[1][2]=f[2][1]=dis[1][2];
            f[2][2]=2*dis[1][2];
            for(int i=3;i<=n;i++){
                for(int j=1;j<i-1;j++)
                    f[i][j]=f[j][i]=f[i-1][j]+dis[i][i-1];
                f[i][i-1]=f[i-1][i]=f[i][i]=0x7f7f7f7f;
                for(int j=1;j<=i-1;j++)
                    f[i-1][i]=f[i][i-1]=min(f[i][i-1],f[j][i-1]+dis[j][i]);
                for(int j=1;j<=i;j++)
                    f[i][i]=min(f[i][i],f[j][i]+dis[j][i]);
            }
            printf("%.2lf
    ",f[n][n]);
        }
    }
     
    细雨斜风作晓寒。淡烟疏柳媚晴滩。入淮清洛渐漫漫。 雪沫乳花浮午盏,蓼茸蒿笋试春盘。人间有味是清欢。
  • 相关阅读:
    古典密码-移位密码|埃特巴什密码Atbash
    古典密码-凯撒密码Caeser
    古典密码-维吉尼亚密码Vigenere
    使用kubeadm搭建一个k8s集群
    用户态线程和内核态线程的区别
    模板合集
    NoteExpress 章节合并后如何更新参考文献列表?
    CSDN 博客园主题
    GShang的博客园2020年终总结
    【比赛记录】CodeChef January Challenge 2021
  • 原文地址:https://www.cnblogs.com/cangT-Tlan/p/7429780.html
Copyright © 2011-2022 走看看