题目描述
Farmer John最近为奶牛们的图书馆添置了一个巨大的书架,尽管它是如此的大,但它还是几乎瞬间就被各种各样的书塞满了。现在,只有书架的顶上还留有一点空间。 所有N(1 <= N <= 20)头奶牛都有一个确定的身高H_i(1 <= H_i <= 1,000,000 - 好高的奶牛>_<)。设所有奶牛身高的和为S。书架的 高度为B,并且保证1 <= B <= S。 为了够到比最高的那头奶牛还要高的书架顶,奶牛们不得不象演杂技一般,一头站在另一头的背上,叠成一座“奶牛塔”。当然,这个塔的高度,就是塔中所有奶牛的身高之和。为了往书架顶上放东西,所有奶牛的身高和必须不小于书架的高度。 塔叠得越高便越不稳定,于是奶牛们希望找到一种方案,使得叠出的塔在高度不小于书架高度的情况下,高度尽可能小。你也可以猜到你的任务了:写一个程序,计算奶牛们叠成的塔在满足要求的情况下,最少要比书架高多少。
输入输出格式
输入格式:
- 第1行: 2个用空格隔开的整数:N 和 B * 第2..N+1行: 第i+1行是1个整数:H_i
输出格式:
- 第1行: 输出1个非负整数,即奶牛们叠成的塔最少比书架高的高度
输入输出样例
说明
输出说明:
我们选用奶牛1、3、4、5叠成塔,她们的总高度为3 + 3 + 5 + 6 = 17。任何方案都无法叠出高度为16的塔,于是答案为1。
思路:正难则反,01背包
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,sum,b; int num[21]; int f[2000010]; int main(){ scanf("%d%d",&n,&b); for(int i=1;i<=n;i++) scanf("%d",&num[i]),sum+=num[i]; int W=sum-b; for(int i=1;i<=n;i++) for(int j=W;j>=num[i];j--) f[j]=max(f[j],f[j-num[i]]+num[i]); cout<<W-f[W]; }