zoukankan      html  css  js  c++  java
  • es的分词器analyzer

    analyzer  

    分词器使用的两个情形:  
    1,Index time analysis.  创建或者更新文档时,会对文档进行分词
    2,Search time analysis.  查询时,对查询语句分词

    - 查询时通过analyzer指定分词器

    GET test_index/_search
    {
      "query": {
        "match": {
          "name": {
            "query": "lin",
            "analyzer": "standard"
          }
        }
      }
    }

    - 创建index mapping时指定search_analyzer

    PUT test2
    {
      "mappings": {
        "properties": {
            "title":{
              "type": "text",
              "analyzer": "whitespace",
              "search_analyzer": "standard"
            }
          }
      }
    }
    # 不指定分词时,会使用默认的standard

    注意:

    •  明确字段是否需要分词,不需要分词的字段将type设置为keyword,可以节省空间和提高写性能。

    _analyzer api    

    GET _analyze
    {
      "analyzer": "standard",
      "text": "this is a test"
    }
    # 可以查看text的内容使用standard分词后的结果
    {
      "tokens" : [
        {
          "token" : "this",
          "start_offset" : 0,
          "end_offset" : 4,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "is",
          "start_offset" : 5,
          "end_offset" : 7,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "a",
          "start_offset" : 8,
          "end_offset" : 9,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "test",
          "start_offset" : 10,
          "end_offset" : 14,
          "type" : "<ALPHANUM>",
          "position" : 3
        }
      ]
    }

    设置analyzer

    PUT test3
    {
      "settings": {
        "analysis": {   
          "analyzer": {     
            "my_analyzer":{  
              "type":"standard",   
              "stopwords":"_english_"
            }
          }
        }
      },
      "mappings": {
        "properties": {
            "my_text":{
              "type": "text",
              "analyzer": "standard",
              "fields": {
                "english":{
                  "type": "text",
                  "analyzer": "my_analyzer"
                }
              }
            }
        }
      }
    }

    运行结果:

    POST test3/_analyze
    {
      "field": "my_text",
      "text": ["The test message."]
    }
    
    {
      "tokens" : [
        {
          "token" : "the",
          "start_offset" : 0,
          "end_offset" : 3,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "test",
          "start_offset" : 4,
          "end_offset" : 8,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "message",
          "start_offset" : 9,
          "end_offset" : 16,
          "type" : "<ALPHANUM>",
          "position" : 2
        }
      ]
    }
    
    
    POST test3/_analyze
    {
      "field": "my_text.english", 
      "text": ["The test message."]
    }
    {
      "tokens" : [
        {
          "token" : "test",
          "start_offset" : 4,
          "end_offset" : 8,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "message",
          "start_offset" : 9,
          "end_offset" : 16,
          "type" : "<ALPHANUM>",
          "position" : 2
        }
      ]
    }

    ES内置了很多种analyzer。比如:

    • standard  由以下组成
      • tokenizer:Standard Tokenizer
      • token filter:Standard Token Filter,Lower Case Token Filter,Stop Token Filter 
        analyzer API测试 :
        POST _analyze
        {
          "analyzer": "standard",
          "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
        }

        得到结果:      

    {
      "tokens" : [
        {
          "token" : "the",
          "start_offset" : 0,
          "end_offset" : 3,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "2",
          "start_offset" : 4,
          "end_offset" : 5,
          "type" : "<NUM>",
          "position" : 1
        },
        {
          "token" : "quick",
          "start_offset" : 6,
          "end_offset" : 11,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "brown",
          "start_offset" : 12,
          "end_offset" : 17,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "foxes",
          "start_offset" : 18,
          "end_offset" : 23,
          "type" : "<ALPHANUM>",
          "position" : 4
        },
        {
          "token" : "jumped",
          "start_offset" : 24,
          "end_offset" : 30,
          "type" : "<ALPHANUM>",
          "position" : 5
        },
        {
          "token" : "over",
          "start_offset" : 31,
          "end_offset" : 35,
          "type" : "<ALPHANUM>",
          "position" : 6
        },
        {
          "token" : "the",
          "start_offset" : 36,
          "end_offset" : 39,
          "type" : "<ALPHANUM>",
          "position" : 7
        },
        {
          "token" : "lazy",
          "start_offset" : 40,
          "end_offset" : 44,
          "type" : "<ALPHANUM>",
          "position" : 8
        },
        {
          "token" : "dog's",
          "start_offset" : 45,
          "end_offset" : 50,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "bone",
          "start_offset" : 51,
          "end_offset" : 55,
          "type" : "<ALPHANUM>",
          "position" : 10
        }
      ]
    }

     

    • whitespace  空格为分隔符
      POST _analyze
      {
        "analyzer": "whitespace",
        "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
      }
      -->  [ The,2,QUICK,Brown-Foxes,jumped,over,the,lazy,dog's,bone. ]
    • simple     
      复制代码
      POST _analyze
      {
        "analyzer": "simple",
        "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
      }
      ---> [ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]

      复制代码
    • stop   默认stopwords用_english_ 
      复制代码
      POST _analyze
      {
        "analyzer": "stop",
        "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
      }
      -->[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]
      可选参数:
      # stopwords
      # stopwords_path
      复制代码
    • keyword  不分词的
      POST _analyze
      {
        "analyzer": "keyword",
        "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
      }
      得到  "token": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." 一条完整的语句

     

    第三方analyzer插件---中文分词(ik分词器)

    es内置很多分词器,但是对中文分词并不友好,例如使用standard分词器对一句中文话进行分词,会分成一个字一个字的。这时可以使用第三方的Analyzer插件,比如 ik、pinyin等。这里以ik为例

    1,首先安装插件,重启es:

    # bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
    # /etc/init.d/elasticsearch restart

    2,使用示例:

    GET _analyze
    {
      "analyzer": "ik_max_word",
      "text": "你好吗?我有一句话要对你说呀。"
    }

    GET _analyze
    {
      "analyzer": "ik_smart",
      "text": "你好吗?我有一句话要对你说呀。"
    }

    参考:https://github.com/medcl/elasticsearch-analysis-ik

    还可以用内置的 character filter, tokenizer, token filter 组装一个analyzer(custom analyzer)

    • custom  定制analyzer,由以下几部分组成
      • 0个或多个e character filters
      • 1个tokenizer
      • 0个或多个 token filters

        

    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "type":"custom",
              "tokenizer":"standard",
              "char_filter":["html_strip"],
              "filter":["lowercase"]
            }
          }
        }
      }
    }
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's <b> bone.</b>"]
    }
    得到:[the,2,quick,brown,foxes,jumped,over,the,lazy,dog's,bone]

    自定义分词器

    自定义分词需要在索引的配置中设定,如下所示:

    复制代码
    PUT test_index
    {
      "settings": {
        "analysis": {    # 分词设置,可以自定义
          "char_filter": {},   #char_filter  关键字
          "tokenizer": {},    #tokenizer 关键字
          "filter": {},     #filter  关键字
          "analyzer": {}    #analyzer 关键字
        }
      }
    }
    复制代码

    character filter  在tokenizer之前对原始文本进行处理,比如增加,删除,替换字符等

    会影响后续tokenizer解析的position和offset信息

    • html strip  除去html标签和转换html实体
      • 参数:escaped_tags不删除的标签

      

    POST _analyze
    {
      "tokenizer": "keyword",
      "char_filter": ["html_strip"],
      "text": ["<p>I&apos;m so <b>happy</b>!</p>"]
    }
    得到:
          "token": """
    
    I'm so happy!
    
    """
    #配置示例
    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {  #关键字
            "my_analyzer":{   #自定义analyzer
              "tokenizer":"keyword",
              "char_filter":["my_char_filter"]
            }
          },
          "char_filter": {  #关键字
            "my_char_filter":{   #自定义char_filter
              "type":"html_strip",
              "escaped_tags":["b"]  #不从文本中删除的HTML标记数组
            }
          }}}}
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["<p>I&apos;m so <b>happy</b>!</p>"]
    }
    得到:
          "token": """
    
    I'm so <b>happy</b>!
    
    """,
    • mapping    映射类型,以下参数必须二选一
      • mappings 指定一组映射,每个映射格式为 key=>value
      • mappings_path 绝对路径或者相对于config路径   key=>value
    • 复制代码
      PUT t_index
      {
        "settings": {
          "analysis": {
            "analyzer": {     #关键字
              "my_analyzer":{   #自定义分词器
                "tokenizer":"standard",
                "char_filter":"my_char_filter"  
              }
            },
            "char_filter": {    #关键字
              "my_char_filter":{  #自定义char_filter
                "type":"mapping", 
                "mappings":[       #指明映射关系
                  ":)=>happy",
                  ":(=>sad"
                ]
              }}}}}
      POST t_index/_analyze
      {
        "analyzer": "my_analyzer",
        "text": ["i am so :)"]
      }
      得到 [i,am,so,happy]
      复制代码
    • pattern replace
      • pattern参数  正则
      • replacement 替换字符串 可以使用$1..$9
      • flags  正则标志

    tokenizer  将原始文档按照一定规则切分为单词

    • standard
      • 参数:max_token_length,最大token长度,默认是255

        

    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "tokenizer":"my_tokenizer"
            }
          },
          "tokenizer": { 
            "my_tokenizer":{
              "type":"standard",
              "max_token_length":5      
            }}}}}
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到   [ The, 2, QUICK, Brown, Foxes, jumpe, d, over, the, lazy, dog's, bone ]
    # jumped 长度为6  在5这个位置被分割
    • letter    非字母时分成多个terms

      

    POST _analyze
    {
      "tokenizer": "letter",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到 [ The, QUICK, Brown, Foxes, jumped, over, the, lazy, dog, s, bone ]
    • lowcase  跟letter tokenizer一样 ,同时将字母转化成小写

      

    POST _analyze
    {
      "tokenizer": "lowercase",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    得到  [ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
    • whitespace   按照空白字符分成多个terms
      • 参数:max_token_length
    POST _analyze
    {
      "tokenizer": "whitespace",
      "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    得到 [ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]
    • keyword   空操作,输出完全相同的文本
      • 参数:buffer_size,单词一个term读入缓冲区的长度,默认256
    POST _analyze
    {
      "tokenizer": "keyword",
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    }
    得到"token": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." 一个完整的文本

    token filter   针对tokenizer 输出的单词进行增删改等操作

    • lowercase  将输出的单词转化成小写
    POST _analyze
    {
      "filter": ["lowercase"],
      "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's  bone"]
    }
    --->
    "token": "the 2 quick brown-foxes jumped over the lazy dog's  bone"
    
    PUT t_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "type":"custom", 
              "tokenizer":"standard", 
              "filter":"lowercase"
            }
          }
        }
      }
    }
    POST t_index/_analyze
    {
      "analyzer": "my_analyzer",
        "text": ["The 2 QUICK Brown-Foxes jumped over the lazy dog's  bone"]
    }
    • stop  从token流中删除stop words 。
      复制代码
      参数有:
      # stopwords   要使用的stopwords, 默认_english_
      # stopwords_path
      # ignore_case   设置为true则为小写,默认false
      # remove_trailing
      PUT t_index
      {
        "settings": {
          "analysis": {
            "analyzer": {
              "my_analyzer":{
                "type":"custom",
                "tokenizer":"standard",
                "filter":"my_filter"
              }
            },
            "filter": {
              "my_filter":{
                "type":"stop",
                "stopwords":["and","or","not"]
              }
            }
          }
        }
      }
      POST t_index/_analyze
      {
        "analyzer": "my_analyzer",
        "text": ["lucky and happy not sad"]
      }
      -------------->
      [lucky,happy,sad]
      复制代码

    喜欢这篇文章?欢迎打赏~~

  • 相关阅读:
    《APP》团队冲刺第二阶段 八
    《APP》团队冲刺第二阶段 七
    《APP》团队冲刺第二阶段 六
    《APP》团队冲刺第二阶段 五
    《APP》团队冲刺第二阶段 四
    团队项目总结(事后诸葛亮)
    第二阶段团队效绩
    团队项目-第二阶段冲刺-10
    团队项目-第二阶段冲刺-9
    团队项目-第二阶段冲刺-8
  • 原文地址:https://www.cnblogs.com/cangqinglang/p/14163507.html
Copyright © 2011-2022 走看看