zoukankan      html  css  js  c++  java
  • X mod f(x) (思维数位dp)

    Here is a function f(x):
       int f ( int x ) {
           if ( x == 0 ) return 0;
           return f ( x / 10 ) + x % 10;
       }
    


       Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10 9), how many integer x that mod f(x) equal to 0.

    Input

       The first line has an integer T (1 <= T <= 50), indicate the number of test cases. 
       Each test case has two integers A, B. 

    Output

       For each test case, output only one line containing the case number and an integer indicated the number of x. 

    Sample Input

    2
    1 10
    11 20

    Sample Output

    Case 1: 10
    Case 2: 3

    本题不容易想到的是运用枚举进行对所要凑成的数进行枚举

    这样就可以在数位dp的过程中进行取余操作

    dp数组记录的状态分别是数位 枚举值,当前数位值,余数;

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    int dp[11][90][90][90];//数位 枚举值,当前数位值,余数;
    int a[11];
    int dfs(int pos,int lim, int k,int sum,int mod)
    {
        //cout<<pos<<" "<<k<<" "<<sum << " "<<mod<<endl;
        if(pos==0)
        {
            return sum==k&&mod==0;
        }
        if(!lim&&dp[pos][k][sum][mod]!=-1) return dp[pos][k][sum][mod];
        int ans=0,s;
        s=lim?a[pos]:9;
        for(int i=0;i<=s;i++)
        {
            int temp=(mod*10+i)%k;
            ans+=dfs(pos-1,lim&&i==s,k,sum+i,temp);
        }
        if(!lim) dp[pos][k][sum][mod]=ans;
        return ans;
    }
    int solve(long long x)
    {
        int cnt=0;
        while(x!=0)
        {
            ++cnt;
            a[cnt]=x%10;
            x/=10;
        }
        int ans=0;
        for(int i=1;i<=(cnt)*9;i++)
        {
            ans+=dfs(cnt,1,i,0,0);
        }
        return ans;
    }
    int main()
    {
        memset(dp,-1,sizeof(dp));
        int t;
        scanf("%d",&t);
        int cas=0;
        while(t--)
        {
            cas++;
            long long temp1,temp2;
            scanf("%lld%lld",&temp1,&temp2);
            //cout<<solve(temp1)<<" "<<solve(temp2)<<endl;
            printf("Case %d: %d
    ",cas,solve(temp2)-solve(temp1-1));
        }
    }
  • 相关阅读:
    PHP四种基础算法详解
    Webuploader教程(一)------简单实用上传功能
    macOS Sierra上面的php开发环境安装
    mac lamp环境 apache文件配置
    mysql 通过拷贝data文件夹进行恢复。
    mysql 执行 cannot found mac安装mysql的两种方法(含配置)
    mac 终端里进入mysql和退出
    macOS Sierra安装Apache2.4+PHP7.0+MySQL5.7.16
    Javascript基础知识
    2016年6月份基础学习要求
  • 原文地址:https://www.cnblogs.com/caowenbo/p/11852310.html
Copyright © 2011-2022 走看看