一道FFT的标准练习题。
把(q_i)除进去,就可以得到(E(j) = sum_{i<j}frac{q_j}{(i-j)^2} - sum_{i > j}frac{q_j}{(i-j)^2}).
把这个式子前后两部分分别拆开,设(f(i) = q_i),(g(i) = frac{1}{i^2}),那么前一部分就是(sum_{i=0}^j f(j) * g(i-j)),而后一部分就是(sum_{i = 0}^{n - j - 1}f(i+j) * g(j))
后半部分好像不大好维护……我们把整个序列调过来,用(f1)表示(f)调过来后的序列,那么后半部分就可以写成(sum_{i = 0}^{n - j - 1} f1(n - i - j - 1) * g(j))
那么前后两个式子都符合了卷积的形式,可以使用FFT求解。然后它问的每一个(E_i)相对应地就是每一个系数。
看一下代码。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('
')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back
using namespace std;
typedef long long ll;
const int M = 200005;
const int INF = 1000000009;
const double eps = 1e-7;
const double pi = acos(-1);
const ll mod = 998244353;
ll read()
{
ll ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
}
struct Comp
{
double x,y;
Comp(){}
Comp(double px,double py){x = px,y = py;}
fr Comp operator + (const Comp &a,const Comp &b) {return (Comp){a.x + b.x,a.y + b.y};}
fr Comp operator - (const Comp &a,const Comp &b) {return (Comp){a.x - b.x,a.y - b.y};}
fr Comp operator * (const Comp &a,const Comp &b) {return (Comp){a.x * b.x - a.y * b.y,a.y * b.x + a.x * b.y};}
}f[M<<1],g[M<<1],f1[M<<1],kx,ky;
int n,rev[M<<1],len = 1,L;
double c[M<<1];
void fft(Comp *a,int f)
{
rep(i,0,len-1) if(i < rev[i]) swap(a[i],a[rev[i]]);
for(int i = 1;i < len;i <<= 1)
{
Comp omg1(cos(pi / i),f * sin(pi / i));
for(int j = 0;j < len;j += (i << 1))
{
Comp omg(1,0);
rep(k,0,i-1)
{
kx = a[j+k],ky = omg * a[j+k+i];
a[j+k] = kx + ky,a[j+k+i] = kx - ky,omg = omg * omg1;
}
}
}
}
int main()
{
n = read() - 1;
rep(i,0,n)
{
scanf("%lf",&f[i].x),f1[n-i].x = f[i].x;
if(i) g[i].x = 1.0 / double(i) / double(i);
}
while(len <= n << 1) len <<= 1,L++;
rep(i,0,len-1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (L-1));
fft(f,1),fft(f1,1),fft(g,1);
rep(i,0,len-1) f[i] = f[i] * g[i],f1[i] = f1[i] * g[i];
fft(f,-1),fft(f1,-1);
rep(i,0,n) c[i] = (f[i].x - f1[n - i].x) / len;
rep(i,0,n) printf("%.3lf
",c[i]);
return 0;
}