题目要求:求出
[sum_{i=1}^nsum_{j=1}^m[gcd(i,j) = d]
]
我们先假设m<n.
这个还是老套路先把d除进去然后互相替代……
[sum_{i=1}^{leftlfloorfrac{n}{d}
ight
floor}sum_{j=1}^{leftlfloorfrac{m}{d}
ight
floor}[gcd(i,j) = 1]
]
之后我们用莫比乌斯函数的性质!再把互相之间的限制条件调换一下!就直接得到结果就是:
[sum_{p=1}^{frac{n}{d}}mu(p)leftlfloorfrac{n}{dp}
ight
floorleftlfloorfrac{m}{dp}
ight
floor
]
然后就做完啦,先把给定的n,m除以d,剩下的直接整除分块即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('
')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define I puts("bug")
using namespace std;
typedef long long ll;
const int M = 100005;
const int INF = 1000000009;
const double eps = 1e-7;
const double pi = acos(-1);
const ll mod = 1e9+7;
ll read()
{
ll ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
}
int n,a,b,d,tot,p[M],sum[M],mu[M];
bool np[M];
void euler()
{
np[1] = 1,mu[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,mu[i] = -1;
for(int j = 1;i * p[j] <= M-2;j++)
{
np[i*p[j]] = 1;
if(!(i % p[j])) {mu[i * p[j]] = 0;break;}
mu[i*p[j]] = -mu[i];
}
}
//rep(i,1,10) printf("%d ",mu[i]);enter;
rep(i,1,M-2) sum[i] = sum[i-1] + mu[i];
}
int solve(int k1,int k2)
{
//printf("%d %d
",k1,k2);
int m = min(k1,k2),ans = 0;
for(int i = 1,j;i <= m;i = j + 1)
{
j = min(k1 / (k1 / i),k2 / (k2 / i));
//printf("%d
",j);
ans += (k1 / i) * (k2 / i) * (sum[j] - sum[i-1]);
}
return ans;
}
int main()
{
euler();
n = read();
while(n--)
{
a = read(),b = read(),d = read();
int k1 = a / d,k2 = b / d;
printf("%d
",solve(k1,k2));
}
return 0;
}