zoukankan      html  css  js  c++  java
  • SDOI2013 方程

    传送门
    看到这个题想起来熟悉的插板(正整数解,不能为空)。
    首先看后一种限制,这个好办,强制先往这些盒子里放一些球,之后再插板。
    前一种限制怎么办……? 那我们考虑反着做,用容斥原理计算出不合法的情况,减掉就可以了。
    想起来还是很简单的,但是这玩意实现起来真是恶心的要死…… 模数可以分解,于是我全部预处理了阶乘,不然是真的过不去……
    看一下暴力的代码。

    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    #define rep(i,a,n) for(ll i = a;i <= n;i++)
    #define per(i,n,a) for(ll i = n;i >= a;i--)
    #define enter putchar('
    ')
    
    using namespace std;
    typedef long long ll;
    const int M = 200005;
    const int INF = 2147483647;
    const ll mod1 = 262203414;
    const ll mod2 = 437367875;
    const double eps = 1e-8;
    
    ll read()
    {
       ll ans = 0,op = 1;char ch = getchar();
       while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
       while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
       return ans * op;
    }
    
    ll T,p,n,n1,n2,m,A[20],sum,ans,fac[M],inv[M];
    ll bas[10] = {0,2,3,11,397,10007};
    
    ll mul(ll a,ll b,ll t)
    {
       ll res = a * b - (ll)((long double)a / t * b + eps) * t;
       return (res % t + t) % t;
    }
    ll exgcd(ll a,ll b,ll &x,ll &y)
    {
       if(!b){x = 1,y = 0;return a;}
       ll d = exgcd(b,a%b,y,x);
       y -= a / b * x;
       return d;
    }
    ll Inv(ll a,ll b)
    {
       ll x,y;
       exgcd(a,b,x,y);
       return (x % b + b) % b;
    }
    ll CRT(ll b,ll t) {return mul(mul(b,Inv(p/t,t),p),p/t,p);}
    ll qpow(ll a,ll b,ll t)
    {
       ll p = 1;
       while(b)
       {
          if(b & 1) p = mul(p,a,t);
          a = mul(a,a,t),b >>= 1;
       }
       return p;
    }
    void init(ll p,ll pk)
    {
       fac[0] = 1;
       rep(i,1,pk) (i%p) ? fac[i] = mul(fac[i-1],i,pk) : fac[i] = fac[i-1];
    }
    ll Fac(ll x,ll pi,ll pk)
    {
       if(!x) return 1;
       ll res = fac[pk];
       res = mul(qpow(res,x/pk,pk),fac[x%pk],pk);
       return mul(res,Fac(x/pi,pi,pk),pk);
    }
    
    ll C(ll n,ll m,ll pi,ll pk)
    {
       init(pi,pk);
       ll d = Fac(n,pi,pk),d1 = Fac(m,pi,pk),d2 = Fac(n-m,pi,pk);
       ll k = 0;
       for(ll i = n;i;i /= pi) k += i / pi;
       for(ll i = m;i;i /= pi) k -= i / pi;
       for(ll i = n-m;i;i /= pi) k -= i / pi;
       return mul(mul(d,Inv(d1,pk),pk),mul(qpow(pi,k,pk),Inv(d2,pk),pk),pk);
    }
    
    ll exlucas(ll n,ll m)
    {
       if(n < m) return 0;
       ll res = CRT(C(n,m,p,p),p);
       return res;
    }
    
    ll exlucas1(ll n,ll m)
    {
       if(n < m) return 0;
       ll res = 0;
       rep(i,1,5) res += CRT(C(n,m,bas[i],bas[i]),bas[i]),res %= p;
       return res;
    }
    
    ll exlucas2(ll n,ll m)
    {
       if(n < m) return 0;
       ll res = 0;
       res += CRT(C(n,m,5,125),125),res %= p;
       res += CRT(C(n,m,7,343),343),res %= p;
       res += CRT(C(n,m,101,10201),10201),res %= p;
       return res;
    }
    
    int get(int x)
    {
       sum = 0;
       int cur = 1,tot = 0;
       while(x)
       {
          if(x&1) sum += A[cur],tot++;
          x >>= 1,cur++;
       }
       return tot;
    }
    
    int main()
    {
       T = read(),p = read();
       while(T--)
       {
          n = read(),n1 = read(),n2 = read(),m = read();
          rep(i,1,n1+n2) {A[i] = read();if(i > n1) m -= (A[i]-1);}
          if(p == 10007)
          {
         ans = exlucas(m-1,n-1);
         rep(i,1,(1<<n1)-1)
         {
            int d = get(i);
            if(!((d-1)&1)) ans += (p - exlucas(m-1-sum,n-1)),ans %= p;
            else ans += exlucas(m-1-sum,n-1),ans %= p;
         }
         printf("%lld
    ",ans);
          }
          if(p == 262203414)
          {
         ans = exlucas1(m-1,n-1);
         rep(i,1,(1<<n1)-1)
         {
            int d = get(i);
            if(!((d-1)&1)) ans += (p - exlucas1(m-1-sum,n-1)),ans %= p;
            else ans += exlucas1(m-1-sum,n-1),ans %= p;
         }
         printf("%lld
    ",ans);
          }
          if(p == 437367875)
          {
         ans = exlucas2(m-1,n-1);
         rep(i,1,(1<<n1)-1)
         {
            int d = get(i);
            if(!((d-1)&1)) ans += (p - exlucas2(m-1-sum,n-1)),ans %= p;
            else ans += exlucas2(m-1-sum,n-1),ans %= p;
         }
         printf("%lld
    ",ans);
          }
       }
       return 0;
    }
    
    
  • 相关阅读:
    开源围棋A.I. FoolGo
    再写围棋的MC模拟
    棋串的数据结构
    一种Lua到C的封装
    用vim写ios程序
    一种C函数到Lua的封装
    Unix命令
    RSA java rsa加密,解密,生成密钥对工具类
    UOS 开启远程登录
    UOS 设置 java 程序开机启动
  • 原文地址:https://www.cnblogs.com/captain1/p/10394969.html
Copyright © 2011-2022 走看看