zoukankan      html  css  js  c++  java
  • cf166e 在四面体上寻找路线数 递推,取模

       来源:codeforces                  E. Tetrahedron
     

    You are given a tetrahedron. Let's mark its vertices with letters ABC and D correspondingly.

    An ant is standing in the vertex D of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.

    You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex Dto itself in exactly n steps. In other words, you are asked to find out the number of different cyclic paths with the length of n from vertex D to itself. As the number can be quite large, you should print it modulo 1000000007 (109 + 7).

    Input

    The first line contains the only integer n (1 ≤ n ≤ 107) — the required length of the cyclic path.

    Output

    Print the only integer — the required number of ways modulo 1000000007 (109 + 7).

    Examples
    input
    Copy
    2
    output
    3
    input
    Copy
    4
    output
    21

    思路:
    递推ans[n]=ans[n-1]*2+ans[n-2]*3,但是ans会很大,需要取模
    取模后的ans可能已经不是ans了
    (ans[n-1]%mod*2+ans[n-2]*3)%mod==(ans[n-1]*2+ans[n-2]*3)%mod 是否成立?

    经过查阅

      1.(a*b) mod M=(a mod M)*(b mod M) mod M

      2.(a+b) mod M=(a mod M+b mod M) mod M;

    
    
    
     

    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        long long n,ans,a=0,b=3,c=6;
        cin>>n;
        if(n<4)
        {
            if(n==1)ans=a;
            else if(n==2)ans=b;
            else if(n==3)ans=c;
        }
        for(int i=4;i<=n;i++)
        {
            ans=(b*3+c*2)%1000000007;
            a=b;
            b=c;
            c=ans;
        }
        cout<<ans<<endl;
        return 0;
    }
  • 相关阅读:
    openstack官方指导书
    获取当前日期时间并格式化
    获取url中的参数
    页签切换
    app开屏广告
    开发接口文档--本接口文档是读取控制器方法上的注释自动生成的
    bzoj 1491: [NOI2007]社交网络
    bzoj 3996: [TJOI2015]线性代数
    5.6水题合集
    bzoj 3528: [Zjoi2014]星系调查
  • 原文地址:https://www.cnblogs.com/carcar/p/8541203.html
Copyright © 2011-2022 走看看