题目链接:poj3468
题意:给定一段数组,有两种操作,一种是给某段区间加c,另一种是查询一段区间的和
思路:暴力的方法是每次都给这段区间的点加c,查询也遍历一遍区间,复杂度是n*n,肯定过不去,另一种思路是用线段树记录区间的和,每次查询的复杂度是lgn,修改不必更新到每个点,当某个区间全被修改时,我们可以给它加一个懒惰标记,表示这个区间的所有下面节点都需要更新,只是因为现在不需要使用而暂时没有更新。这样修改的复杂度也降到了lgn
ac代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+10;
long long num[maxn],sum[maxn*4],lazy[maxn*4];
void pushdown(int rt,int len1,int len2)//向下更新懒惰标记
{
if(lazy[rt])
{
lazy[rt*2]+=lazy[rt];//注意是+=而不是=
lazy[rt*2+1]+=lazy[rt];
sum[rt*2]+=lazy[rt]*len1;
sum[rt*2+1]+=lazy[rt]*len2;
sum[rt]=sum[rt*2]+sum[rt*2+1];
lazy[rt]=0;
}
}
void build(int st,int en,int rt)
{
if(st==en)
{
sum[rt]=num[st];
return;
}
build(st,(st+en)/2,rt*2);
build((st+en)/2+1,en,rt*2+1);
sum[rt]=sum[rt*2]+sum[rt*2+1];
}
void add(int l,int r,int c,int st,int en,int rt)
{
int md=(st+en)/2;
if(l<=st&&r>=en)
{
lazy[rt]+=c;
sum[rt]+=(en-st+1)*c;
return ;
}
pushdown(rt,md-st+1,en-md);
if(r>=md+1)
{
add(l,r,c,md+1,en,rt*2+1);
}
if(l<=md)
{
add(l,r,c,st,md,rt*2);
}
sum[rt]=sum[rt*2]+sum[rt*2+1];
}
long long quer(int l,int r,int rt,int st,int en)
{
long long res=0,md=(st+en)/2;
if(l<=st&&r>=en)
return sum[rt];
pushdown(rt,md-st+1,en-md);
if(r>=md+1)
res+=quer(l,r,rt*2+1,md+1,en);
if(l<=md)
res+=quer(l,r,rt*2,st,md);
return res;
}
int main()
{
char comd;
int n,q;
cin>>n>>q;
for(int i=1;i<=n;i++)
scanf("%lld",&num[i]);
build(1,n,1);
for(int i=1;i<=q;i++)
{
int l,r,c;
cin>>comd;
if(comd=='C')
{
scanf("%d %d %d",&l,&r,&c);
add(l,r,c,1,n,1);
}
else
{
scanf("%d %d",&l,&r);
printf("%lld
",quer(l,r,1,1,n));
}
}
return 0;
}
提升题:hdu6315
题意:有ab两个数组,有两种操作,一种是给a数组的一段区间加一,另一种是求a/b数组的累加和
思路:只有当一段区间最大的a大于最小的b时,这段区间的答案才会发生改变,如果没有发生改变,那么我们就不必要去给子区间修改最大a的值。我们给这段区间加个懒惰标记就可以了,以后浏览到这个区间时我们再修改。复杂度为nlgn
ac代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+10;
int sum[maxn*4],maxa[maxn*4],minb[maxn*4],b[maxn],lazy[maxn*4];
void pushup(int rt)
{
sum[rt]=sum[rt*2+1]+sum[rt*2];
maxa[rt]=max(maxa[rt*2],maxa[rt*2+1]);
minb[rt]=min(minb[rt*2],minb[rt*2+1]);
}
void pushdowm(int rt)
{
if(lazy[rt])
{
lazy[rt*2]+=lazy[rt];
lazy[rt*2+1]+=lazy[rt];
maxa[rt*2]+=lazy[rt];
maxa[rt*2+1]+=lazy[rt];
lazy[rt]=0;
}
}
void build(int st,int en,int rt)
{
if(st==en)
{
minb[rt]=b[st];
return;
}
build(st,(st+en)/2,rt*2);
build((st+en)/2+1,en,rt*2+1);
pushup(rt);
}
void add(int l,int r,int st,int en,int rt)
{
int md=(st+en)/2;
pushdowm(rt);
if(l<=st&&r>=en)
{
maxa[rt]++;
if(maxa[rt]>=minb[rt])
{
if(st!=en)
{
add(l,r,md+1,en,rt*2+1);
add(l,r,st,md,rt*2);
pushup(rt);
}
else
{
while(maxa[rt]>=minb[rt])
{
minb[rt]+=b[st];
sum[rt]++;
}
}
}
else
lazy[rt]++;
return;
}
else
{
if(l<=md)
add(l,r,st,md,rt*2);
if(r>=md+1)
add(l,r,md+1,en,rt*2+1);
}
pushup(rt);
}
int quer(int l,int r,int st,int en,int rt)
{
pushdowm(rt);
int md=(st+en)/2;
if(l<=st&&r>=en)
return sum[rt];
int res=0;
if(l<=md)
res+=quer(l,r,st,md,rt*2);
if(r>=md+1)
res+=quer(l,r,md+1,en,rt*2+1);
pushup(rt);
return res;
}
int main()
{
int n,q;
char comd[10];
while(cin>>n>>q)
{
for(int i=0;i<maxn*4;i++)sum[i]=0,maxa[i]=0,minb[i]=0,lazy[i]=0;
for(int i=0;i<maxn;i++)lazy[i]=0;
for(int i=1; i<=n; i++)
scanf("%d",&b[i]);
build(1,n,1);
for(int i=1; i<=q; i++)
{
int l,r;
scanf("%s %d %d",&comd,&l,&r);
if(comd[0]=='a')
add(l,r,1,n,1);
else
printf("%d
",quer(l,r,1,n,1));
}
}
return 0;
}
总结:懒惰标记可以解决一些区域修改问题