zoukankan      html  css  js  c++  java
  • 人脸表情识别 深度神经网络 python实现 简单模型 fer2013数据集

    参考网址:https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/

    1.数据集介绍及处理:

    (1)  数据集Fer2013下载地址为:https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

      该数据集中每张图片的像素为48*48,该数据集用excel读取后显示的格式如下图所示:

                  

    第一列为标签(也即为什么表情),第二列为像素值,第三列是代表该图片是训练集还是测试集,已经给你打乱了。只需要用即可

    (2)pandas读取数据集  

    import numpy as np 
    import pandas as pd
    
    data = pd.read_csv('data/fer2013/fer2013.csv')
    num_of_instances = len(data) #获取数据集的数量
    print("数据集的数量为:",num_of_instances)
    
    pixels = data['pixels']
    emotions = data['emotion']
    usages = data['Usage']

    (3)分离训练集和测试集

    num_classes = 7   #表情的类别数目
    x_train,y_train,x_test,y_test = [],[],[],[]
    
    for emotion,img,usage in zip(emotions,pixels,usages):    
        try: 
            emotion = keras.utils.to_categorical(emotion,num_classes)   # 独热向量编码
            val = img.split(" ")
            pixels = np.array(val,'float32')
            
            if(usage == 'Training'):
                x_train.append(pixels)
                y_train.append(emotion)
            elif(usage == 'PublicTest'):
                x_test.append(pixels)
                y_test.append(emotion)
        except:
            print("",end="")

    (4)把数据集转换为numpy数组格式,方便后续处理

    x_train = np.array(x_train)
    y_train = np.array(y_train)
    x_train = x_train.reshape(-1,48,48,1)
    x_test = np.array(x_test)
    y_test = np.array(y_test)
    x_test = x_test.reshape(-1,48,48,1)

    (5)显示其中的前4张图片

    import matplotlib.pyplot as plt
    %matplotlib inline
    
    for i in range(4): 
        plt.subplot(221+i)
        plt.gray()
        plt.imshow(x_train[i].reshape([48,48]))

     2. 创建网络 进行训练和测试

    from keras.models import Sequential
    from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
    from keras.optimizers import Adam
    from keras.preprocessing.image import ImageDataGenerator
    
    batch_size = 8
    epochs = 20
    
    model = Sequential()
    
    #第一层卷积层
    model.add(Conv2D(input_shape=(48,48,1),filters=32,kernel_size=3,padding='same',activation='relu'))
    model.add(Conv2D(filters=32,kernel_size=3,padding='same',activation='relu'))
    model.add(MaxPool2D(pool_size=2, strides=2))
    
    #第二层卷积层
    model.add(Conv2D(filters=64,kernel_size=3,padding='same',activation='relu'))
    model.add(Conv2D(filters=64,kernel_size=3,padding='same',activation='relu'))
    model.add(MaxPool2D(pool_size=2, strides=2))
    
    #第三层卷积层
    model.add(Conv2D(filters=128,kernel_size=3,padding='same',activation='relu'))
    model.add(Conv2D(filters=128,kernel_size=3,padding='same',activation='relu'))
    model.add(MaxPool2D(pool_size=2, strides=2))
    
    model.add(Flatten())
    
    #全连接层
    model.add(Dense(64,activation = 'relu'))
    model.add(Dropout(0.5))
    model.add(Dense(7,activation = 'softmax'))
    
    #进行训练
    model.compile(loss = 'categorical_crossentropy',optimizer = Adam(),metrics=['accuracy'])
    model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs)
    
    
    train_score = model.evaluate(x_train, y_train, verbose=0)
    print('Train loss:', train_score[0])
    print('Train accuracy:', 100*train_score[1])
     
    test_score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', test_score[0])
    print('Test accuracy:', 100*test_score[1])

    这是一种通用识别架构,由于我的电脑配置不行,程序正在训练,不再贴运行结果。可自行修改网络架构。

    程序中需要注意的地方:同时遍历多个数组或列表时,可用zip()函数进行遍历。

  • 相关阅读:
    12.13 Redis缓存面试题精简版
    12.12 Oracle数据库相关面试题精简版(后续继续完善)
    1.131 IDEA2018版本64位激活
    7.11 读《如何阅读一本书》有感
    Linux下source命令详解(转载)
    Scala 随笔
    SparkStreaming实时流式大数据处理实战总结
    转载:hive的一些udaf
    IDEA的一些常见报错
    hive使用UDF函数
  • 原文地址:https://www.cnblogs.com/carlber/p/10836579.html
Copyright © 2011-2022 走看看