zoukankan      html  css  js  c++  java
  • Numpy 通用函数

    1.改变数组形状

    (1)数组的转置

    ar1 = np.arange(10)
    ar2 = np.ones((5,2))
    print(ar1,'
    ',ar1.T)  #numpy里面,一维数组不存在转置
    print(ar2,'
    ',ar2.T)
    print('------')
    # .T方法:转置,例如原shape为(3,4)/(2,3,4),转置结果为(4,3)/(4,3,2) → 所以一维数组转置后结果不变

    输出结果:

    [0 1 2 3 4 5 6 7 8 9] 
     [0 1 2 3 4 5 6 7 8 9]
    [[1. 1.]
     [1. 1.]
     [1. 1.]
     [1. 1.]
     [1. 1.]] 
     [[1. 1. 1. 1. 1.]
     [1. 1. 1. 1. 1.]]

    (2)多维数组的转置:

    import numpy as np
    ar3 = np.ones((2,3,4))  #多维数组的转置 完全倒过来
    ar3_t = ar3.T
    print(ar3.shape,ar3_t.shape)  
    print(ar3)
    print(ar3_t)

    输出结果:

    (2, 3, 4) (4, 3, 2)
    [[[1. 1. 1. 1.]
      [1. 1. 1. 1.]
      [1. 1. 1. 1.]]
    
     [[1. 1. 1. 1.]
      [1. 1. 1. 1.]
      [1. 1. 1. 1.]]]
    [[[1. 1.]
      [1. 1.]
      [1. 1.]]
    
     [[1. 1.]
      [1. 1.]
      [1. 1.]]
    
     [[1. 1.]
      [1. 1.]
      [1. 1.]]
    
     [[1. 1.]
      [1. 1.]
      [1. 1.]]]

    (3)np.reshape()和np.resize()

    ar3 = ar1.reshape(2,5)     # 用法1:直接将已有数组改变形状             
    ar4 = np.zeros((4,6)).reshape(3,8)   # 用法2:生成数组后直接改变形状
    ar5 = np.reshape(np.arange(12),(3,4))   # 用法3:参数内添加数组,目标形状
    print(ar1,'
    ',ar3)
    print(ar4)
    print(ar5)
    print('------')
    # numpy.reshape(a, newshape, order='C'):为数组提供新形状,而不更改其数据,所以元素数量需要一致!!
    
    ar6 = np.resize(np.arange(5),(3,4))
    print(ar6)
    # numpy.resize(a, new_shape):返回具有指定形状的新数组,如有必要可重复填充所需数量的元素。
    # 注意了:.T/.reshape()/.resize()都是生成新的数组!!!

    运行结果:

    [0 1 2 3 4 5 6 7 8 9] 
     [[0 1 2 3 4]
     [5 6 7 8 9]]
    [[0. 0. 0. 0. 0. 0. 0. 0.]
     [0. 0. 0. 0. 0. 0. 0. 0.]
     [0. 0. 0. 0. 0. 0. 0. 0.]]
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]]
    ------
    [[0 1 2 3]
     [4 0 1 2]
     [3 4 0 1]]

    直接的reshape()和直接resize()

    ar6 = np.arange(12)
    ar6.reshape(3,4)
    print(ar6)
    print(ar6.reshape(3,4))  #生成了新的数组
    
    ar7 = np.arange(12)
    ar7.resize(3,5)
    print(ar7)
    print(ar7.resize(3,5)) #直接resize()没有生成数组,所以输出为None. #注意区分np.resize()和直接resize()的区别

    运行结果:

    [ 0  1  2  3  4  5  6  7  8  9 10 11]
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]]
    
    
    [[ 0  1  2  3  4]
     [ 5  6  7  8  9]
     [10 11  0  0  0]]
    None

    2.数组的复制

    # 数组的复制
    
    ar1 = np.arange(10)
    ar2 = ar1
    print(ar2 is ar1)
    ar1[2] = 9
    print(ar1,ar2)
    print(id(ar1),id(ar2))
    # 回忆python的赋值逻辑:指向内存中生成的一个值 → 这里ar1和ar2指向同一个值,所以ar1改变,ar2一起改变
    
    ar3 = ar1.copy()
    print(ar3 is ar1)
    ar1[0] = 9
    print(ar1,ar3)
    print(id(ar1),id(ar3))
    # copy方法生成数组及其数据的完整拷贝
    # 再次提醒:.T/.reshape()/.resize()都是生成新的数组!!!

    运行结果:

    True
    [0 1 9 3 4 5 6 7 8 9] [0 1 9 3 4 5 6 7 8 9]
    1573773237424 1573773237424
    False
    [9 1 9 3 4 5 6 7 8 9] [0 1 9 3 4 5 6 7 8 9]
    1573773237424 1573773236944

    3.数组类型的转换

    # 数组类型转换:.astype()
    
    ar1 = np.arange(10,dtype=float)
    print(ar1,ar1.dtype)
    print('-----')
    # 可以在参数位置设置数组类型
    
    ar2 = ar1.astype(np.int32)      #字符型:np.str 
    print(ar2,ar2.dtype)
    print(ar1,ar1.dtype)
    # a.astype():转换数组类型
    # 注意:养成好习惯,数组类型用np.int32,而不是直接int32

    运行结果:

    [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64
    -----
    [0 1 2 3 4 5 6 7 8 9] int32
    [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64

    4.数组堆叠

    # 数组堆叠
    
    a = np.arange(5)    # a为一维数组,5个元素
    b = np.arange(5,9) # b为一维数组,4个元素
    ar1 = np.hstack((a,b))  # 注意:((a,b)),这里形状可以不一样 横向拼接
    print(a,a.shape)
    print(b,b.shape)
    print(ar1,ar1.shape)
    a = np.array([[1],[2],[3]])   # a为二维数组,3行1列
    b = np.array([['a'],['b'],['c']])  # b为二维数组,3行1列
    ar2 = np.hstack((a,b))  # 注意:((a,b)),这里形状必须一样 横向拼接
    print(a,a.shape)
    print(b,b.shape)
    print(ar2,ar2.shape)
    print('-----')
    # numpy.hstack(tup):水平(按列顺序)堆叠数组
    
    a = np.arange(5)    
    b = np.arange(5,10)
    ar1 = np.vstack((a,b))   # 垂直堆叠
    print(a,a.shape)
    print(b,b.shape)
    print(ar1,ar1.shape)
    a = np.array([[1],[2],[3]])   
    b = np.array([['a'],['b'],['c'],['d']])   
    ar2 = np.vstack((a,b))  # 这里形状可以不一样
    print(a,a.shape)
    print(b,b.shape)
    print(ar2,ar2.shape)
    print('-----')
    # numpy.vstack(tup):垂直(按列顺序)堆叠数组
    
    a = np.arange(5)    
    b = np.arange(5,10)
    ar1 = np.stack((a,b))   #默认行和行相堆叠
    ar2 = np.stack((a,b),axis = 1)  #axis为轴的顺序 axis=1变为列和列的相互堆叠
    print(a,a.shape)
    print(b,b.shape)
    print(ar1,ar1.shape)
    print(ar2,ar2.shape)
    # numpy.stack(arrays, axis=0):沿着新轴连接数组的序列,形状必须一样!
    # 重点解释axis参数的意思,假设两个数组[1 2 3]和[4 5 6],shape均为(3,0)
    # axis=0:[[1 2 3] [4 5 6]],shape为(2,3)
    # axis=1:[[1 4] [2 5] [3 6]],shape为(3,2)

    运行结果:

    [0 1 2 3 4] (5,)
    [5 6 7 8] (4,)
    [0 1 2 3 4 5 6 7 8] (9,)
    [[1]
     [2]
     [3]] (3, 1)
    [['a']
     ['b']
     ['c']] (3, 1)
    [['1' 'a']
     ['2' 'b']
     ['3' 'c']] (3, 2)
    -----
    [0 1 2 3 4] (5,)
    [5 6 7 8 9] (5,)
    [[0 1 2 3 4]
     [5 6 7 8 9]] (2, 5)
    [[1]
     [2]
     [3]] (3, 1)
    [['a']
     ['b']
     ['c']
     ['d']] (4, 1)
    [['1']
     ['2']
     ['3']
     ['a']
     ['b']
     ['c']
     ['d']] (7, 1)
    -----
    [0 1 2 3 4] (5,)
    [5 6 7 8 9] (5,)
    [[0 1 2 3 4]
     [5 6 7 8 9]] (2, 5)
    [[0 5]
     [1 6]
     [2 7]
     [3 8]
     [4 9]] (5, 2)

    5.数组拆分

    # 数组拆分 
    
    ar = np.arange(16).reshape(4,4)
    ar1 = np.hsplit(ar,2)   #按照列进行拆分 为2个数组
    print(ar)
    print(ar1,type(ar1))
    # numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分
    # 输出结果为列表,列表中元素为数组
    
    ar2 = np.vsplit(ar,4)  #按照行进行拆分为4个数组
    print(ar2,type(ar2))   
    # numpy.vsplit(ary, indices_or_sections)::将数组垂直(行方向)拆分为多个子数组 → 按行拆

    运行结果:

    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]
     [12 13 14 15]]
    [array([[ 0,  1],
           [ 4,  5],
           [ 8,  9],
           [12, 13]]), array([[ 2,  3],
           [ 6,  7],
           [10, 11],
           [14, 15]])] <class 'list'>
    [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]]), array([[12, 13, 14, 15]])] <class 'list'>

    6.数组简单运算

    # 数组简单运算
    
    ar = np.arange(6).reshape(2,3)
    print(ar)
    print(ar + 10)   # 加法
    print(ar * 2)   # 乘法
    print(1 / (ar+1))  # 除法
    print(ar ** 0.5)  #
    # 与标量的运算
    
    print(ar.mean())  # 求平均值
    print(ar.max())  # 求最大值
    print(ar.min())  # 求最小值
    print(ar.std())  # 求标准差
    print(ar.var())  # 求方差
    print(ar.sum(), np.sum(ar,axis = 0))  # 求和,np.sum() → axis为0,按列求和;axis为1,按行求和
    print(np.sort(np.array([1,4,3,2,5,6])))  # 排序
    # 常用函数

    运行结果:

    [[0 1 2]
     [3 4 5]]
    [[10 11 12]
     [13 14 15]]
    [[ 0  2  4]
     [ 6  8 10]]
    [[1.         0.5        0.33333333]
     [0.25       0.2        0.16666667]]
    [[0.         1.         1.41421356]
     [1.73205081 2.         2.23606798]]
    2.5
    5
    0
    1.707825127659933
    2.9166666666666665
    15 [3 5 7]
    [1 2 3 4 5 6]
  • 相关阅读:
    缓存ehcache启动失败missing element type
    使用Shell发布Spring Boot程序
    从游牧民族价值观看程序员问题
    浏览器端的缓存localStorage应用
    基于进程的Quartz.NET管理系统QuartzService(一)
    ASP.NET WebAPI 15 CORS
    ASP.NET WebAPI 14 仿写Filter管道
    ASP.NET WebAPI 13 Filter
    ASP.NET WebAPI 12 Action的执行
    ASP.NET WebAPI 11 参数验证
  • 原文地址:https://www.cnblogs.com/carlber/p/9906279.html
Copyright © 2011-2022 走看看