1.改变数组形状
(1)数组的转置
ar1 = np.arange(10) ar2 = np.ones((5,2)) print(ar1,' ',ar1.T) #numpy里面,一维数组不存在转置 print(ar2,' ',ar2.T) print('------') # .T方法:转置,例如原shape为(3,4)/(2,3,4),转置结果为(4,3)/(4,3,2) → 所以一维数组转置后结果不变
输出结果:
[0 1 2 3 4 5 6 7 8 9] [0 1 2 3 4 5 6 7 8 9] [[1. 1.] [1. 1.] [1. 1.] [1. 1.] [1. 1.]] [[1. 1. 1. 1. 1.] [1. 1. 1. 1. 1.]]
(2)多维数组的转置:
import numpy as np ar3 = np.ones((2,3,4)) #多维数组的转置 完全倒过来 ar3_t = ar3.T print(ar3.shape,ar3_t.shape) print(ar3) print(ar3_t)
输出结果:
(2, 3, 4) (4, 3, 2) [[[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.]] [[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.]]] [[[1. 1.] [1. 1.] [1. 1.]] [[1. 1.] [1. 1.] [1. 1.]] [[1. 1.] [1. 1.] [1. 1.]] [[1. 1.] [1. 1.] [1. 1.]]]
(3)np.reshape()和np.resize()
ar3 = ar1.reshape(2,5) # 用法1:直接将已有数组改变形状 ar4 = np.zeros((4,6)).reshape(3,8) # 用法2:生成数组后直接改变形状 ar5 = np.reshape(np.arange(12),(3,4)) # 用法3:参数内添加数组,目标形状 print(ar1,' ',ar3) print(ar4) print(ar5) print('------') # numpy.reshape(a, newshape, order='C'):为数组提供新形状,而不更改其数据,所以元素数量需要一致!! ar6 = np.resize(np.arange(5),(3,4)) print(ar6) # numpy.resize(a, new_shape):返回具有指定形状的新数组,如有必要可重复填充所需数量的元素。 # 注意了:.T/.reshape()/.resize()都是生成新的数组!!!
运行结果:
[0 1 2 3 4 5 6 7 8 9] [[0 1 2 3 4] [5 6 7 8 9]] [[0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0.]] [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] ------ [[0 1 2 3] [4 0 1 2] [3 4 0 1]]
直接的reshape()和直接resize()
ar6 = np.arange(12) ar6.reshape(3,4) print(ar6) print(ar6.reshape(3,4)) #生成了新的数组 ar7 = np.arange(12) ar7.resize(3,5) print(ar7) print(ar7.resize(3,5)) #直接resize()没有生成数组,所以输出为None. #注意区分np.resize()和直接resize()的区别
运行结果:
[ 0 1 2 3 4 5 6 7 8 9 10 11] [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 0 0 0]] None
2.数组的复制
# 数组的复制 ar1 = np.arange(10) ar2 = ar1 print(ar2 is ar1) ar1[2] = 9 print(ar1,ar2) print(id(ar1),id(ar2)) # 回忆python的赋值逻辑:指向内存中生成的一个值 → 这里ar1和ar2指向同一个值,所以ar1改变,ar2一起改变 ar3 = ar1.copy() print(ar3 is ar1) ar1[0] = 9 print(ar1,ar3) print(id(ar1),id(ar3)) # copy方法生成数组及其数据的完整拷贝 # 再次提醒:.T/.reshape()/.resize()都是生成新的数组!!!
运行结果:
True [0 1 9 3 4 5 6 7 8 9] [0 1 9 3 4 5 6 7 8 9] 1573773237424 1573773237424 False [9 1 9 3 4 5 6 7 8 9] [0 1 9 3 4 5 6 7 8 9] 1573773237424 1573773236944
3.数组类型的转换
# 数组类型转换:.astype() ar1 = np.arange(10,dtype=float) print(ar1,ar1.dtype) print('-----') # 可以在参数位置设置数组类型 ar2 = ar1.astype(np.int32) #字符型:np.str print(ar2,ar2.dtype) print(ar1,ar1.dtype) # a.astype():转换数组类型 # 注意:养成好习惯,数组类型用np.int32,而不是直接int32
运行结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64 ----- [0 1 2 3 4 5 6 7 8 9] int32 [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64
4.数组堆叠
# 数组堆叠 a = np.arange(5) # a为一维数组,5个元素 b = np.arange(5,9) # b为一维数组,4个元素 ar1 = np.hstack((a,b)) # 注意:((a,b)),这里形状可以不一样 横向拼接 print(a,a.shape) print(b,b.shape) print(ar1,ar1.shape) a = np.array([[1],[2],[3]]) # a为二维数组,3行1列 b = np.array([['a'],['b'],['c']]) # b为二维数组,3行1列 ar2 = np.hstack((a,b)) # 注意:((a,b)),这里形状必须一样 横向拼接 print(a,a.shape) print(b,b.shape) print(ar2,ar2.shape) print('-----') # numpy.hstack(tup):水平(按列顺序)堆叠数组 a = np.arange(5) b = np.arange(5,10) ar1 = np.vstack((a,b)) # 垂直堆叠 print(a,a.shape) print(b,b.shape) print(ar1,ar1.shape) a = np.array([[1],[2],[3]]) b = np.array([['a'],['b'],['c'],['d']]) ar2 = np.vstack((a,b)) # 这里形状可以不一样 print(a,a.shape) print(b,b.shape) print(ar2,ar2.shape) print('-----') # numpy.vstack(tup):垂直(按列顺序)堆叠数组 a = np.arange(5) b = np.arange(5,10) ar1 = np.stack((a,b)) #默认行和行相堆叠 ar2 = np.stack((a,b),axis = 1) #axis为轴的顺序 axis=1变为列和列的相互堆叠 print(a,a.shape) print(b,b.shape) print(ar1,ar1.shape) print(ar2,ar2.shape) # numpy.stack(arrays, axis=0):沿着新轴连接数组的序列,形状必须一样! # 重点解释axis参数的意思,假设两个数组[1 2 3]和[4 5 6],shape均为(3,0) # axis=0:[[1 2 3] [4 5 6]],shape为(2,3) # axis=1:[[1 4] [2 5] [3 6]],shape为(3,2)
运行结果:
[0 1 2 3 4] (5,) [5 6 7 8] (4,) [0 1 2 3 4 5 6 7 8] (9,) [[1] [2] [3]] (3, 1) [['a'] ['b'] ['c']] (3, 1) [['1' 'a'] ['2' 'b'] ['3' 'c']] (3, 2) ----- [0 1 2 3 4] (5,) [5 6 7 8 9] (5,) [[0 1 2 3 4] [5 6 7 8 9]] (2, 5) [[1] [2] [3]] (3, 1) [['a'] ['b'] ['c'] ['d']] (4, 1) [['1'] ['2'] ['3'] ['a'] ['b'] ['c'] ['d']] (7, 1) ----- [0 1 2 3 4] (5,) [5 6 7 8 9] (5,) [[0 1 2 3 4] [5 6 7 8 9]] (2, 5) [[0 5] [1 6] [2 7] [3 8] [4 9]] (5, 2)
5.数组拆分
# 数组拆分 ar = np.arange(16).reshape(4,4) ar1 = np.hsplit(ar,2) #按照列进行拆分 为2个数组 print(ar) print(ar1,type(ar1)) # numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分 # 输出结果为列表,列表中元素为数组 ar2 = np.vsplit(ar,4) #按照行进行拆分为4个数组 print(ar2,type(ar2)) # numpy.vsplit(ary, indices_or_sections)::将数组垂直(行方向)拆分为多个子数组 → 按行拆
运行结果:
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] [array([[ 0, 1], [ 4, 5], [ 8, 9], [12, 13]]), array([[ 2, 3], [ 6, 7], [10, 11], [14, 15]])] <class 'list'> [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]]), array([[12, 13, 14, 15]])] <class 'list'>
6.数组简单运算
# 数组简单运算 ar = np.arange(6).reshape(2,3) print(ar) print(ar + 10) # 加法 print(ar * 2) # 乘法 print(1 / (ar+1)) # 除法 print(ar ** 0.5) # 幂 # 与标量的运算 print(ar.mean()) # 求平均值 print(ar.max()) # 求最大值 print(ar.min()) # 求最小值 print(ar.std()) # 求标准差 print(ar.var()) # 求方差 print(ar.sum(), np.sum(ar,axis = 0)) # 求和,np.sum() → axis为0,按列求和;axis为1,按行求和 print(np.sort(np.array([1,4,3,2,5,6]))) # 排序 # 常用函数
运行结果:
[[0 1 2] [3 4 5]] [[10 11 12] [13 14 15]] [[ 0 2 4] [ 6 8 10]] [[1. 0.5 0.33333333] [0.25 0.2 0.16666667]] [[0. 1. 1.41421356] [1.73205081 2. 2.23606798]] 2.5 5 0 1.707825127659933 2.9166666666666665 15 [3 5 7] [1 2 3 4 5 6]