zoukankan      html  css  js  c++  java
  • similarity measures

    The most common useful indexes have been collected by Holliday et al (Holliday, JD., Hu, C-Y. and Willett, P. (2002) Combinatorial Chemistry and High Throughput Screening 5, 155-166) These are shown in the table, and can be referred to, by name, in applications and toolkits calls which allow user defined similarity functions.

    Measure Range Formula
    Cosine 0.0,1.0 {short description of image}
    Dice 0.0,1.0 {short description of image}
    Euclid 0.0,1.0 {short description of image}
    Forbes 0.0,∞ {short description of image}
    Hamman -1.0,1.0 {short description of image}
    Jaccard 0.0,1.0 {short description of image}
    Kulczynski 0.0,1.0 {short description of image}
    Manhattan 1.0,0.0 {short description of image}
    Matching 0.0,1.0 {short description of image}
    Pearson -1.0,1.0 {short description of image}
    Rogers-Tanimoto 0.0,1.0 {short description of image}
    Russell-Rao 0.0,1.0 {short description of image}
    Simpson 0.0,1.0 {short description of image}
    Tanimoto 0.0,1.0 {short description of image}
    Yule -1.0,1.0 {short description of image}

    Notes

    • The Tanimoto and Jaccard indexes are the same.
    • The Forbes index has no upper limit.
    • The Manhattan index is a distance = 1.0 - Matching index
    • The Kulczynski index is the mean of the individual substructure similarities
    • The Simpson index is the best of the individual substructure similarities
    • The Dice index is the ratio of the bits in common to the arithmetic mean of the number of on bits in the two items.
    • The Cosine index is the ration of the bits in common to the geometric mean of the number of on bits in the two items.

    from : http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

  • 相关阅读:
    [Hadoop]
    [Linux]
    [Linux]
    [Hadoop]
    [Hadoop]
    vue-学习笔记-API-全局配置
    vue 风格指南-必须的
    vue 学习笔记-复用-自定义指令
    vue学习笔记-过滤器
    vue 学习笔记-复用-对象混入
  • 原文地址:https://www.cnblogs.com/carol-wei/p/7664957.html
Copyright © 2011-2022 走看看