zoukankan      html  css  js  c++  java
  • 【计算机视觉】OpenCV篇(9)

    什么是轮廓?

    轮廓是一系列相连的点组成的曲线,代表了物体的基本外形。

    轮廓与边缘好像挺像的?

    是的,确实挺像,那么区别是什么呢?简而言之,轮廓是连续的,而边缘并不全都连续(见下图示例)。其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手,而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓。

    边缘和轮廓的区别(图片来源:http://pic.ex2tron.top/cv2_understand_contours.jpg

    寻找轮廓的操作一般用于二值化图,所以通常会使用阈值分割或Canny边缘检测先得到二值图。

    【注:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一个框】

    OpenCV4.1.0 C++ Sample Code:

    /**
     * @function findContours_Demo.cpp
     * @brief Demo code to find contours in an image
     * @author OpenCV team
     */
    
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/imgproc.hpp"
    #include <iostream>
    
    using namespace cv;
    using namespace std;
    
    Mat src_gray;
    int thresh = 100;
    RNG rng(12345);
    
    /// Function header
    void thresh_callback(int, void* );
    
    /**
     * @function main
     */
    int main( int argc, char** argv )
    {
        /// Load source image
        CommandLineParser parser( argc, argv, "{@input | ../data/HappyFish.jpg | input image}" );
        Mat src = imread( parser.get<String>( "@input" ) );
        if( src.empty() )
        {
          cout << "Could not open or find the image!
    " << endl;
          cout << "Usage: " << argv[0] << " <Input image>" << endl;
          return -1;
        }
    
        /// Convert image to gray and blur it
        cvtColor( src, src_gray, COLOR_BGR2GRAY );
        blur( src_gray, src_gray, Size(3,3) );
    
        /// Create Window
        const char* source_window = "Source";
        namedWindow( source_window );
        imshow( source_window, src );
    
        const int max_thresh = 255;
        createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );
        thresh_callback( 0, 0 );
    
        waitKey();
        return 0;
    }
    
    /**
     * @function thresh_callback
     */
    void thresh_callback(int, void* )
    {
        /// Detect edges using Canny
        Mat canny_output;
        Canny( src_gray, canny_output, thresh, thresh*2 );
    
        /// Find contours
        vector<vector<Point> > contours;
        vector<Vec4i> hierarchy;
        findContours( canny_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE );
    
        /// Draw contours
        Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
        for( size_t i = 0; i< contours.size(); i++ )
        {
            Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );
            drawContours( drawing, contours, (int)i, color, 2, LINE_8, hierarchy, 0 );
        }
    
        /// Show in a window
        imshow( "Contours", drawing );
    }
    

    Result:

    应用1:寻找正方形(squares.cpp)

    // The "Square Detector" program.
    // It loads several images sequentially and tries to find squares in
    // each image
    
    #include "opencv2/core.hpp"
    #include "opencv2/imgproc.hpp"
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/core/utils/filesystem.hpp"
    
    #include <iostream>
    
    using namespace cv;
    using namespace std;
    
    static void help(const char* programName)
    {
        cout <<
        "
    A program using pyramid scaling, Canny, contours and contour simplification
    "
        "to find squares in a list of images (pic1-6.png)
    "
        "Returns sequence of squares detected on the image.
    "
        "Call:
    "
        "./" << programName << " [file_name (optional)]
    "
        "Using OpenCV version " << CV_VERSION << "
    " << endl;
    }
    
    
    int thresh = 50, N = 11;
    const char* wndname = "Square Detection Demo";
    
    // helper function:
    // finds a cosine of angle between vectors
    // from pt0->pt1 and from pt0->pt2
    static double angle( Point pt1, Point pt2, Point pt0 )
    {
        double dx1 = pt1.x - pt0.x;
        double dy1 = pt1.y - pt0.y;
        double dx2 = pt2.x - pt0.x;
        double dy2 = pt2.y - pt0.y;
        return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
    }
    
    // returns sequence of squares detected on the image.
    static void findSquares( const Mat& image, vector<vector<Point> >& squares )
    {
        squares.clear();
    
        Mat pyr, timg, gray0(image.size(), CV_8U), gray;
    
        // down-scale and upscale the image to filter out the noise
        pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
        pyrUp(pyr, timg, image.size());
        vector<vector<Point> > contours;
    
        // find squares in every color plane of the image
        for( int c = 0; c < 3; c++ )
        {
            int ch[] = {c, 0};
            mixChannels(&timg, 1, &gray0, 1, ch, 1);
    
            // try several threshold levels
            for( int l = 0; l < N; l++ )
            {
                // hack: use Canny instead of zero threshold level.
                // Canny helps to catch squares with gradient shading
                if( l == 0 )
                {
                    // apply Canny. Take the upper threshold from slider
                    // and set the lower to 0 (which forces edges merging)
                    Canny(gray0, gray, 0, thresh, 5);
                    // dilate canny output to remove potential
                    // holes between edge segments
                    dilate(gray, gray, Mat(), Point(-1,-1));
                }
                else
                {
                    // apply threshold if l!=0:
                    //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                    gray = gray0 >= (l+1)*255/N;
                }
    
                // find contours and store them all as a list
                findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
    
                vector<Point> approx;
    
                // test each contour
                for( size_t i = 0; i < contours.size(); i++ )
                {
                    // approximate contour with accuracy proportional
                    // to the contour perimeter
                    approxPolyDP(contours[i], approx, arcLength(contours[i], true)*0.02, true);
    
                    // square contours should have 4 vertices after approximation
                    // relatively large area (to filter out noisy contours)
                    // and be convex.
                    // Note: absolute value of an area is used because
                    // area may be positive or negative - in accordance with the
                    // contour orientation
                    if( approx.size() == 4 &&
                        fabs(contourArea(approx)) > 1000 &&
                        isContourConvex(approx) )
                    {
                        double maxCosine = 0;
    
                        for( int j = 2; j < 5; j++ )
                        {
                            // find the maximum cosine of the angle between joint edges
                            double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                            maxCosine = MAX(maxCosine, cosine);
                        }
    
                        // if cosines of all angles are small
                        // (all angles are ~90 degree) then write quandrange
                        // vertices to resultant sequence
                        if( maxCosine < 0.3 )
                            squares.push_back(approx);
                    }
                }
            }
        }
    }
    
    
    // the function draws all the squares in the image
    static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
    {
        for( size_t i = 0; i < squares.size(); i++ )
        {
            const Point* p = &squares[i][0];
            int n = (int)squares[i].size();
            polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
        }
    
        imshow(wndname, image);
    }
    
    
    String absoluteFilePath(const String& relative_path) {
        String root_path = "F:/opencv/build/bin/sample-data/";
        String path = utils::fs::join(root_path, relative_path);
        return path;
    }
    
    int main(int argc, char** argv)
    {
        static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
            "pic4.png", "pic5.png", "pic6.png", 0 };
        help(names[0]);
    
        vector<vector<Point> > squares;
    
        for( int i = 0; names[i] != 0; i++ )
        {
            string filename = absoluteFilePath(names[i]);
            Mat image = imread(filename, IMREAD_COLOR);
            if( image.empty() )
            {
                cout << "Couldn't load " << filename << endl;
                continue;
            }
    
            findSquares(image, squares);
            drawSquares(image, squares);
    
            int c = waitKey();
            if( c == 27 )
                break;
        }
    
        return 0;
    }
    

    结果:

      

      

    推荐:

    OpenCV 对轮廓的绘图与筛选操作总结

    基于OpenCV的形状检测

  • 相关阅读:
    表单工具可以什么
    页面嵌套的方式展现报表
    EChars图类型
    SVG图类型
    JSP <c:import>和<jsp:include>区别【转】
    Servlet配置
    jsp的scope属性【转载】
    Cookie、Session【转载】
    page、request、session、application区别【转载】
    C++笔记------static 和 const 在类中用法
  • 原文地址:https://www.cnblogs.com/carsonzhu/p/10863870.html
Copyright © 2011-2022 走看看