zoukankan      html  css  js  c++  java
  • 刷题 | Lintcode 611. Knight Shortest Path

    [Problem]

    Given a knight in a chessboard (a binary matrix with 0 as empty and 1 as barrier) with a source position, find the shortest path to a destination position, return the length of the route. 
    Return -1 if knight can not reached.

     Notice

    source and destination must be empty.
    Knight can not enter the barrier.

    Clarification

    If the knight is at (xy), he can get to the following positions in one step:

    (x + 1, y + 2)
    (x + 1, y - 2)
    (x - 1, y + 2)
    (x - 1, y - 2)
    (x + 2, y + 1)
    (x + 2, y - 1)
    (x - 2, y + 1)
    (x - 2, y - 1)
    
    Example
    [[0,0,0],
     [0,0,0],
     [0,0,0]]
    source = [2, 0] destination = [2, 2] return 2
    
    [[0,1,0],
     [0,0,0],
     [0,0,0]]
    source = [2, 0] destination = [2, 2] return 6
    
    [[0,1,0],
     [0,0,1],
     [0,0,0]]
    source = [2, 0] destination = [2, 2] return -1

    [Idea]

    Examples:

    
    
    In above diagram Knight takes 3 step to reach from (4, 5) to (1, 1)
    (4, 5) -> (5, 3) -> (3, 2) -> (1, 1)  as shown in diagram

    This problem can be seen as shortest path in unweighted graph. Therefore we use BFS to solve this problem. We try all 8 possible positions where a Knight can reach from its position. If reachable position is not already visited and is inside the board, we push this state into queue with distance 1 more than its parent state. Finally we return distance of target position, when it gets pop out from queue.
    Below code implements BFS for searching through cells, where each cell contains its coordinate and distance from starting node. In worst case, below code visits all cells of board, making worst-case time complexity as O(N^2)

    [Code]

    /**
     * Definition for a point.
     * struct Point {
     *     int x, y;
     *     Point() : x(0), y(0) {}
     *     Point(int a, int b) : x(a), y(b) {}
     * };
     */
    class Solution {
    public:
        /**
         * @param grid a chessboard included 0 (false) and 1 (true)
         * @param source, destination a point
         * @return the shortest path 
         */
        int shortestPath(vector<vector<bool>>& grid, Point& source, Point& destination) {
            // Write your code here
            if(grid.empty() || grid[0].empty()) return -1;
            
            int m = grid.size();
            int n = grid[0].size();
            
            vector<vector<int>> directions = {{-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}};
            
            vector<vector<int>> record(m, vector<int>(n, INT_MAX)); // record current distance, also plays a role to check if visited
            record[source.x][source.y] = 0;
    
            queue<Point> q;
            q.push(source);
            while (!q.empty()) {
                Point head = q.front(); 
                q.pop();
                for (int k = 0; k < 8; ++k) {
                    int x = head.x + directions[k][0];
                    int y = head.y + directions[k][1];
                    if (x >=0 && x < m && y >= 0 && y < n && !grid[x][y] &&
                        record[head.x][head.y] + 1 < record[x][y]) {
                        record[x][y] = record[head.x][head.y] + 1;
                        q.push(Point(x, y));
                    }
                }
            }
            if (record[destination.x][destination.y] == INT_MAX)
                return -1;
            return record[destination.x][destination.y];
        }
    };

    [Reference]

    1. GeeksForGeeks: Minimum steps to reach target by a Knight
    2. Jiuzhang Solution: Knight Shortest Path
  • 相关阅读:
    sublime text 安装json插件
    通过坐标系求覆盖物面积
    关于大数据入门的相关闲聊
    渡月橋 ~君 想ふ~
    数据库快照
    oracle 11g安装与使用
    IaaS、PaaS、SaaS介绍(非原创)
    Android项目模块化/组件化开发(非原创)
    开发人员必备的网络知识(非原创)
    公司常见管理系统介绍(非原创)
  • 原文地址:https://www.cnblogs.com/casperwin/p/7455837.html
Copyright © 2011-2022 走看看