zoukankan      html  css  js  c++  java
  • 关于Mapper、Reducer的个人总结(转)

    Mapper的处理过程:

    1.1. InputFormat 产生 InputSplit,并且调用RecordReader将这些逻辑单元(InputSplit)转化为map task的输入。其中InputSplit是map task处理的最小输入单元的逻辑表示。

    1.2. 在客户端代码中调用Job类来设置参数,并执行在hadoop集群的上的MapReduce程序。

    1.3. Mapper类在Job中被实例化,并且通过MapContext对象来传递参数设置。可以调用Job.getConfiguration().set(“myKey”, “myVal”)来设置参数。

    1.4. Mapper的run()方法调用了自身的setup()来设置参数。

    1.5. Mapper的run()方法调用map(KeyInType, ValInType, Context)方法来依次处理InputSplit中输入的key/value数据对。并且可以通过Context参数的Context.write(KeyOutType, ValOutType)方法来发射处理的结果。用户程序还可以用Context来设置状态信息等。同时,用户还可以用Job.setCombinerClass(Class)来设置Combiner,将map产生的中间态数据在Mapper本地进行汇聚,从而减少传递给Reducer的数据。

    1.6. Mapper的run()方法调用cleanup()方法。



    一些说明:

    所有的中间结果都会被MapReduce框架自动的分组,然后传递给Reducer(s)去产生最后的结果。用户可以通过Job.setGroupingComparatorClass(Class)来设置Comparator。如果这个Comparator没有被设置,那么所有有一样的key的数据不会被排序。

    Mapper的结果都是被排序过的,并被划分为R个区块(R是Reducer的个数)。用户可以通过实现自定义的Partitioner类来指定哪些数据被划分给哪个Reducer。

    中间态的数据往往用(key-len, key, value-len, value)的简单格式存储。用户程序可以指定CompressionCodec来压缩中间数据。

    Map的数目由输入数据的总大小决定。一般来说,一个计算节点10-100个map任务有较好的并行性。如果cpu的计算量很小,那么平均每个计算节点300个map任务也是可以的。但是每个任务都是需要时间来初始化的,因此每个任务不能划分的太小,至少也要平均一个任务执行个一分钟。可以通过mapreduce.job.maps参数来设置map的数目。更进一步说,任务的数量是有InputFormat.getSplits()方法来控制的,用户可以重写这个方法。

    ------------------------------------------------------------------------------------------------------------------------------------------------

    Reducer主要分三个步骤:

    1.       Shuffle洗牌

    这步骤是Reducer从相关的Mapper节点获取中间态的数据。

    2.       Sort排序

    在洗牌的同时,Reducer对获取的数据进行排序。在这个过程中,可以用Job.setGroupingComparatorClass(Class)来对同一个key的数据进行Secondary Sort二次排序。

    3.       Reduce

    Reduce的调用顺序和Map差不多,也是通过run()方法调用setup(),reduce(),cleanup()来实现的。Reducer输出的数据是没有经过排序的。

    Reduce 的数目可以通过Job.setNumReduceTasks(int)来设置。一般来说,Reduce的数目是节点数的0.95到1.75倍。

    Reduce的数目也可以设置为0,那么这样map的输出会直接写到文件系统中。

    Reduce中还可以使用Mark-Reset的功能。简而言之就是可以在遍历map产生的中间态的数据的时候可以进行标记,然后在后面适当的时候用reset回到最近标记的位置。当然这是有一点限制的,如下面的例子,必须自己在Reduce方法中对reduce的Iterator重新new 一个MarkableIterator才能使用。

    public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
    MarkableIterator<IntWritable> mitr = new MarkableIterator<IntWritable>(values.iterator());
    // Mark the position
    mitr.mark();
    while (mitr.hasNext()) {
    i = mitr.next();
    // Do the necessary processing
    }


    // Reset
    mitr.reset();
    // Iterate all over again. Since mark was called before the first
    // call to mitr.next() in this example, we will iterate over all
    // the values now
    while (mitr.hasNext()) {
    i = mitr.next();
    // Do the necessary processing
    }
    }



    3.     Partitioner

    Partitioner 对map输出的中间态数据按照reduce的数目进行分区,一般通过hash来进行划分。默认的实现是HashPartitioner。

    4.     Reporting Progress

    MapReduce程序可以通过mapper或者reducer的Context来汇报应用程序的状态。

    5.     Job

    当我们在写MapReduce程序的时候,通常,在main函数里。建立一个Job对象,设置它的JobName,然后配置输入输出路径,设置我们的Mapper类和Reducer类,设置InputFormat和正确的输出类型等等。然后我们会使用job.waitForCompletion()提交到JobTracker,等待job运行并返回,这就是一般的Job设置过程。JobTracker会初始化这个Job,获取输入分片,然后将一个一个的task任务分配给TaskTrackers执行。TaskTracker获取task是通过心跳的返回值得到的,然后TaskTracker就会为收到的task启动一个JVM来运行。

    Job其实就是提供配置作业、获取作业配置、以及提交作业的功能,以及跟踪作业进度和控制作业。Job类继承于JobContext类。JobContext提供了获取作业配置的功能,如作业ID,作业的Mapper类,Reducer类,输入格式,输出格式等等,它们除了作业ID之外,都是只读的。 Job类在JobContext的基础上,提供了设置作业配置信息的功能、跟踪进度,以及提交作业的接口和控制作业的方法。


    一个Job对象有两种状态,DEFINE和RUNNING,Job对象被创建时的状态时DEFINE,当且仅当Job对象处于DEFINE状态,才可以用来设置作业的一些配置,如Reduce task的数量、InputFormat类、工作的Mapper类,Partitioner类等等,这些设置是通过设置配置信息conf来实现的;当作业通过submit()被提交,就会将这个Job对象的状态设置为RUNNING,这时候作业以及提交了,就不能再设置上面那些参数了,作业处于调度运行阶段。处于RUNNING状态的作业我们可以获取作业、maptask和reduce task的进度,通过代码中的*Progress()获得,这些函数是通过info来获取的,info是RunningJob对象,它是实际在运行的作业的一组获取作业情况的接口,如Progress。


      在waitForCompletion()中,首先用submit()提交作业,然后等待info.waitForCompletion()返回作业执行完毕。verbose参数用来决定是否将运行进度等信息输出给用户。submit()首先会检查是否正确使用了new API,这通过setUseNewAPI()检查旧版本的属性是否被设置来实现的,接着就connect()连接JobTracker并提交。实际提交作业的是一个JobClient对象,提交作业后返回一个RunningJob对象,这个对象可以跟踪作业的进度以及含有由JobTracker设置的作业ID。


      getCounter()函数是用来返回这个作业的计数器列表的,计数器被用来收集作业的统计信息,比如失败的map task数量,reduce输出的记录数等等。它包括内置计数器和用户定义的计数器,用户自定义的计数器可以用来收集用户需要的特定信息。计数器首先被每个task定期传输到TaskTracker,最后TaskTracker再传到JobTracker收集起来。这就意味着,计数器是全局的。

    http://www.aboutyun.com/thread-7066-1-1.html

  • 相关阅读:
    poj 3666 Making the Grade
    poj 3186 Treats for the Cows (区间dp)
    hdu 1074 Doing Homework(状压)
    CodeForces 489C Given Length and Sum of Digits...
    CodeForces 163A Substring and Subsequence
    CodeForces 366C Dima and Salad
    CodeForces 180C Letter
    CodeForces
    hdu 2859 Phalanx
    socket接收大数据流
  • 原文地址:https://www.cnblogs.com/catWang/p/4082229.html
Copyright © 2011-2022 走看看