zoukankan      html  css  js  c++  java
  • POJ-1458 Common Subsequence (最长公共子序列)

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 39851   Accepted: 16030

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    大致题意:求两个字符串的最长公共子序列的长度。

    思路:这是一个很经典的最长公共子序列(LCS)问题。动态转移方程式如下,设有字符串X和字符串Y,dp[i,j]表示的是X的钱i个字符与Y的钱j个字符的最长公共子序列的长度。如果X[i]==Y[j],那么这个字符与之前的LCS一定可以构成一个新的LCS;如果X[i]!=Y[j],则分别考查dp[i-1,j]和dp[i][j-1],选择其中的较大者为LCS。


     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<string>
     6 using namespace std;
     7 const int MAX = 500;
     8 int dp[MAX][MAX] ={0};
     9 int main()
    10 {
    11     int len1,len2;
    12     string str1,str2;
    13     while(cin>>str1>>str2)
    14     {
    15         len1=str1.length();
    16         len2=str2.length();
    17         for(int i=1;i<=len1;i++)
    18         {
    19             for(int j=1;j<=len2;j++)
    20             {
    21                 if(str1[i-1]==str2[j-1])
    22                 {
    23                     dp[i][j]=dp[i-1][j-1]+1;
    24                 }
    25                 else
    26                 {
    27                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    28                 }
    29             }
    30         }
    31         cout<<dp[len1][len2]<<endl;
    32     }
    33     return 0;
    34 }
  • 相关阅读:
    向MySql中插入中文时出现乱码
    MySql插入记录时判断
    SuperGridControl 使用小技巧
    Winform开发中常见界面的DevExpress处理操作
    mysql优化之索引建立的规则
    App性能优化浅谈
    AndroidManifest具体解释之Application(有图更好懂)
    算法——递归思想解决排列组合问题
    Windows App开发之集合控件与数据绑定
    table行随鼠标变色
  • 原文地址:https://www.cnblogs.com/caterpillarofharvard/p/4225815.html
Copyright © 2011-2022 走看看