zoukankan      html  css  js  c++  java
  • 使用 .NET 实现 Ajax 长连接 (Part 2 Mutex Wait & Signal)

    在上一次的文章中,我们说到了如何设计一个ASP.NET Web Service来处理长连接请求。很多人对此就提出了问题,如何hold住请求让它30秒不断开了?这其实很简单,只需要Sleep()一下就可以了:

    Thread.Sleep(30 * 1000);

    然而问题是,我们不是要等30秒然后看看是否有事件需要返回,而是在这30秒内随时有事件随时返回。因此,我们需要一套机制来在等待的过程中检查是否有事件发生了。

    Monitor模型

    在.NET里面,大家最熟悉的线程同步模型应该就是Monitor模型了。没听说过?就是C#的那个lock关键字,实际上它编译出来就是一对Monitor.Enter()和Monitor.Exit()。

    通过lock命令,我们可以针对一个对象创建一个临界区,代码执行到临界区入口时必须获取到该对象的锁才能执行下去,并且在临界区的出口释放该锁。然而这种模型不太适用于解决我们的问题,因为我们需要等待一个事件,如果使用lock来等待的话,那就是说要先在Web Service外部把对象锁上,然后等事件触发了就解锁,这时候Web Service才顺利进入临界区域。

    事实上,要进行这类型的阻塞,还有一个更好的选择,那就是Mutex。

    Mutex模型

    Mutex,也就是mutual exclusive的缩写,“互斥”的意思。Mutex是如何运作的?这有点像是银行的排队叫号系统,所有等待服务的人都坐在大厅里等候(wait)被叫,当一个服务窗口空闲时它就会发出一个信号(signal)来通知下一位等候服务的人。总之,所有执行wait指令的线程都在等候,而每一个signal能够让一个线程结束等候继续执行。

    在.NET里面,wait和signal这两个操作分别对应Mutex.WaitOne()和Mutex.ReleaseMutex()这两个方法。我们可以让Web Service的线程使用Mutex.WaitOne()进入等候状态,而在事件发生时使用Mutex.ReleaseMutex()来通知Web Service线程。因为必须在Mutex.ReleaseMutex()发生后Mutex.WaitOne()才可能继续执行下去,因此能够执行下去就证明必然有事件发生了并且调用了Mutex.ReleaseMutext(),这时候就可以放心地去读取事件消息了。

    简单示例

    在选定使用Mutex模型后,我们来编写一个简单的示例。首先,我们要在WebService派生类内定义一个Mutex,还有一个代表消息的字符串。

    Mutex mutex = new Mutex();
    string message;

    然后,我们定义两个WebMethod。为了把问题简单化,我们选用上一篇文章中开头所说的两个函数签名,也就说只能在一个Web Service内自己发自己收,没有发送目标的概念,也没有超时的概念,还没有可靠性设计。同时,我们将Message类型替换为普通字符串,以便于我们测试。

    我们先编写发送消息的函数:

    public void Send(string message) {
      this.message = message;
      this.mutex.ReleaseMutex();
    }

    在这个发送函数里,首先我们把消息放进了类内全局的变量中,然后让全局的Mutex类释放一个signal。这时候,如果有线程在等待,它可以马上执行下去。如果此时没有线程在等待,那么下一个wait的线程执行到该阻塞的地方就能够不受阻塞继续执行下去。

    现在我们来编写接收消息的函数:

    public string Wait() {
      this.mutex.WaitOne();
      return this.message;
    }

    接收函数一开始就进入wait状态。在得到signal后,需要做的事情就是把全局的消息返回给客户端。

    亲身体验

    最后,我们可以通过ASP.NET Web Service本身支持的Web测试界面来测试一下我们的代码。我们开两个浏览器窗口,一个进入Send()调用,一个进入Wait()调用。然后我们按照如下方法来测试:

    1. 首先执行Send("Hello"),然后执行Wait()。这时候你可以马上看到"Hello"。
    2. 首先执行Wait(),让它等待返回,这时候执行Send("Hello")。随后你可以看到Wait()那段返回"Hello"了。
    3. 按如下顺序执行:Send("Hello");Wait();Send("World");Wait();
    4. 按如下顺序执行:Send("Hello");Send("World");Wait();Wait();
    5. 按如下顺序执行:Wait();Wait();Send("Hello");Send("World");
    6. 按如下顺序执行:Wait();Send("Hello");Wait();Send("World");

    你会发现这样一些奇怪的结果:第3个测试返回的是"World"和"World"。第5个测试先返回"Hello"的并不一定是先执行的那个Wait()线程。后者在某些情况下不是什么问题,特别是长连接中一般之后一个Wait()线程在等待中,所以我们可以不管。而前者,则是因为没有消息队列所造成的,我们只有长度为1的消息窗口,所以只能缓存最后一个消息。这个问题我们将在下一篇文章中解决。

    小结

    在本文中,我们看到了不同的线程同步模型的差异。Monitor模型的lock本质上是一个Semaphore,也就是一个不能连续signal的Mutex,一个signal发出去后必须被一个wait接收了才能进行下一次的signal。同时,Semaphore也限制了signal和wait必须在同一个线程内成对执行,而Mutex则没有此限制。虽然.NET是针对Monitor模型优化的,但在我们的需求当中,只能通过Mutex模型来解决。

    接着,我们便写了一个小小的消协发送与接收函数,实现了我们想要的阻塞式Web Service。同时我们也看到了没有消息队列造成的问题,因此确定接下来我们要做一个消息队列。如果你想知道消息队列如何编写,欢迎订阅我的blog:

  • 相关阅读:
    std thread
    windows更新包发布地址
    How to set up logging level for Spark application in IntelliJ IDEA?
    spark 错误 How to set heap size in spark within the Eclipse environment?
    hadoop 常用命令
    windows 安装hadoop 3.2.1
    windows JAVA_HOME 路径有空格,执行软连接
    day01MyBatisPlus条件构造器(04)
    day01MyBatisPlus的CRUD 接口(03)
    day01MyBatisPlus入门(02)
  • 原文地址:https://www.cnblogs.com/cathsfz/p/1096654.html
Copyright © 2011-2022 走看看