题目
输入一个正整数数N,输出所有和为N连续正整数序列。例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以输出3个连续序列1-5、4-6和7-8。
一种运用数学规律的解法
假定有k个连续的正整数和为N,其中连续序列的第一个数为x,则有x+(x+1)+(x+2)+...+(x+k-1) = N。从而可以求得x = (N - k*(k-1)/2) / k。当x的值小于等于0时,则说明已经没有正整数序列的和为N了,此时循环退出。初始化k=2,表示2个连续的正整数和为N,则可以求出x的值,并判断从x开始是否存在2个连续正整数和为N,若不存在则k++,继续循环。
- bool find_sequence(int N)
- {
- bool has = false;
- int k = 2, x, m ; //k为连续序列的数目,x为起始的值,m用于判断是否有满足条件的值。
- while (true) {
- x = (N - k*(k-1)/2) / k; //求出k个连续正整数和为N的起始值x
- m = (N - k*(k-1)/2) % k; //m用于判断是否有满足条件的连续正整数值
- if (x <= 0) break; //退出条件,如果x<=0,则循环退出。
- if (!m) { //m为0,表示找到了连续子序列和为N。
- has = true;
- output(x, k);
- }
- k++;
- }
- return has;
- }
- void output(int x, int k)
- {
- for (int i=0; i<k; i++) {
- cout << x++ << " ";
- }
- cout << endl;
- }
扩展
问题:是不是所有的正整数都能分解为连续正整数序列呢?
答案:不是。并不是所有的正整数都能分解为连续的正整数和,如32就不能分解为连续正整数和。对于奇数,我们总是能写成2k+1的形式,因此可以分解为[k,k+1],所以总是能分解成连续正整数序列。对于每一个偶数,均可以分解为质因数之积,即n = pow(2, i)*pow(3, j)*pow(5,k)...,如果除了i之外,j,k...均为0,那么n = pow(2, k),对于这种数,其所有的因数均为偶数,是不存在连续子序列和为n的,具体证明请看参考资料2。因此除了2的幂之外,所有的正整数n >=3均可以写成一个连续的自然数之和。
另外一种解法
何海涛先生的博客上有另外一种解法,参考如下:
用两个数small和big分别表示序列的最小值和最大值。首先把small初始化为1,big初始化为2。如果从small到big的序列的和大于n的话,我们向右移动small,相当于从序列中去掉较小的数字。如果从small到big的序列的和小于n的话,我们向右移动big,相当于向序列中添加big的下一个数字。一直到small等于(1+n)/2,因为序列至少要有两个数字。
更直白一点的理解就是先判定以数字2结束的连续序列和是否有等于n的,然后是以3结束的连续序列和是否有等于n的。
- /////////////////////////////////////////////////////////////////////////
- // Find continuous sequence, whose sum is n
- /////////////////////////////////////////////////////////////////////////
- void FindContinuousSequence(int n)
- {
- if(n < 3)
- return;
- int small = 1;
- int big = 2;
- int middle = (1 + n) / 2;
- int sum = small + big;
- while(small < middle)
- {
- // we are lucky and find the sequence
- if(sum == n)
- PrintContinuousSequence(small, big);
- // if the current sum is greater than n,
- // move small forward
- while(sum > n)
- {
- sum -= small;
- small ++;
- // we are lucky and find the sequence
- if(sum == n)
- PrintContinuousSequence(small, big);
- }
- // move big forward
- big ++;
- sum += big;
- }
- }
- /////////////////////////////////////////////////////////////////////////
- // Print continuous sequence between small and big
- /////////////////////////////////////////////////////////////////////////
- void PrintContinuousSequence(int small, int big)
- {
- for(int i = small; i <= big; ++ i)
- printf("%d ", i);
- printf("\n");
- }
参考资料
1 何海涛博客:和为n连续正数序列[算法]
2 http://www.cnblogs.com/wolenski/archive/2012/08/06/2624732.html