zoukankan      html  css  js  c++  java
  • The Unique MST(次小生成树)

    The Unique MST

    Description
    Given a connected undirected graph, tell if its minimum spanning tree is unique.
    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
    1. V’ = V.
    2. T is connected and acyclic.
    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
    Input
    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
    Output
    For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
    Sample Input
    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    Sample Output
    3
    Not Unique!
    思路:
    多组数据
    次小生成树模板

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=10010;
    int t,n,m,father[110],b[110][110],c[110][110];
    bool flag[maxn],in[110][110];
    struct node
    {
        int x;
        int y;
        int w;
        bool operator < (node tmp)const
        {
            return w<tmp.w;
        }
    }a[maxn];
    int find(int x)
    {
        if(x!=father[x])
        father[x]=find(father[x]);
        return father[x];
    }
    int kruskal()
    {
        memset(flag,0,sizeof(flag));
        memset(in,0,sizeof(in));
        int sum=0,v=0;sort(a+1,a+m+1);
        for(int i=1;i<=n;i++)
        father[i]=i;
        for(int i=1;i<=m;i++)
        {
            int f1=find(a[i].x);
            int f2=find(a[i].y);
            if(f1!=f2)
            {
                father[f2]=f1;
                sum++;flag[i]=1;
                in[a[i].x][a[i].y]=in[a[i].y][a[i].x]=1;
                v+=a[i].w;
            }
            if(sum==n-1) break;
        }
        return v;
    }
    void dfs(int star,int now,int from,int maxx)
    {
        b[star][now]=maxx;
        for(int i=1;i<=n;i++)
        {
            if(!in[now][i]) continue;
            if(i==from) continue;
            dfs(star,i,now,max(maxx,c[now][i]));
        }
    }
    void prepare()
    {
        for(int i=1;i<=n;i++)
        dfs(i,i,i,0);
    }
    int main()
    {
        int x,y,z;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            memset(a,0,sizeof(a));
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&x,&y,&z);
                a[i].x=x,a[i].y=y,a[i].w=z;
                c[x][y]=c[y][x]=z;
            }
            int minn=kruskal(),ans=0x7fffffff;
            prepare();
            for(int i=1;i<=m;i++)
            {
                if(flag[i]) continue;
                int u=a[i].x,v=a[i].y;
                ans=min(ans,minn+a[i].w-b[u][v]);
            }
            if(ans==minn) printf("Not Unique!
    ");
            else printf("%d
    ",minn);
        }
        return 0;
    }
  • 相关阅读:
    自己设计大学排名-数据库实践
    自己设计大学排名-数据库实践
    自己设计大学排名-数据库实践
    自己的第一个网页
    类和正则表达(自动更正,和代数运算)
    第一个爬虫和测试
    第一个爬虫和测试
    科学计算和可视化
    数据库分表后如何处理事务问题
    jquery下滑到一定高度后,顶部固定
  • 原文地址:https://www.cnblogs.com/cax1165/p/6070866.html
Copyright © 2011-2022 走看看