zoukankan      html  css  js  c++  java
  • 平衡阵容(RMQ st表算法)

    Balanced Lineup

    Description:
    For the daily milking, Farmer John’s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
    Input:
    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
    Output:
    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
    Sample Input:
    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2
    Sample Output:
    6
    3
    0
    题目大意:
    一农夫有n头牛,输入每头牛的高度,再给定m次查询,查询每个区间中的最大高度差。

    下面给出两种方法:
    1、线段树版

    #include<iostream>
    #include<cstdio> 
    using namespace std;
    const int maxx=50010;
    struct node
    {
        int l,r;
        int lch,rch;
        int maxn,minn;
    }tree[maxx*4];
    int n,m,num,a[maxx];
    int init()
    {
        int p=0;char c=getchar();
        while(c<'0'||c>'9')
        c=getchar();
        while(c>='0'&&c<='9')
        {
            p=p*10+c-'0';
            c=getchar();
        }
        return p;
    }
    void build_tree(int ll,int rr)
    {
        int cur=++num;
        tree[cur].l=ll;
        tree[cur].r=rr;
        if(ll!=rr-1)
        {
            tree[cur].lch=num+1;
            build_tree(ll,(ll+rr)/2);
            tree[cur].rch=num+1;
            build_tree((ll+rr)/2,rr);
            tree[cur].maxn=max(tree[tree[cur].lch].maxn,tree[tree[cur].rch].maxn);
            tree[cur].minn=min(tree[tree[cur].lch].minn,tree[tree[cur].rch].minn);
        }
        else tree[cur].maxn=tree[cur].minn=a[ll];
    }
    int find_max(int k,int ll,int rr)
    {
        if(tree[k].l>=ll&&tree[k].r<=rr)
        return tree[k].maxn;
        int ans=-1;
        if(ll<(tree[k].l+tree[k].r)/2) ans=max(ans,find_max(tree[k].lch,ll,rr));
        if(rr>(tree[k].l+tree[k].r)/2) ans=max(ans,find_max(tree[k].rch,ll,rr));
        return ans; 
    }
    int find_min(int k,int ll,int rr)
    {
        if(tree[k].l>=ll&&tree[k].r<=rr)
        return tree[k].minn;
        int ans=10000000;
        if(ll<(tree[k].l+tree[k].r)/2) ans=min(ans,find_min(tree[k].lch,ll,rr));
        if(rr>(tree[k].l+tree[k].r)/2) ans=min(ans,find_min(tree[k].rch,ll,rr));
        return ans; 
    }
    int main()
    {
        int l,r;
        cin>>n>>m;
        for(int i=1;i<=n;i++)
        a[i]=init();
        build_tree(1,n+1);
        for(int i=1;i<=m;i++)
        {
            l=init();r=init();
            cout<<find_max(1,l,r+1)-find_min(1,l,r+1)<<endl;
        }
        return 0;
    }

    2、RMQ的st表算法:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    const int maxx=50010;
    int n,m,f[maxx][20],maxn[maxx][20],minn[maxx][20];
    int l,r,x,y;
    int init()
    {
        int p=0;char c=getchar();
        while(c<'0'||c>'9')
        c=getchar();
        while(c>='0'&&c<='9')
        {
            p=p*10+c-'0';
            c=getchar();
        }
        return p;
    }
    void prepare()
    {
        for(int j=1;j<=19;j++)
          for(int i=1;i+(1<<j)-1<=n;i++)
          {
            maxn[i][j]=max(maxn[i][j-1],maxn[i+(1<<j-1)][j-1]);
            minn[i][j]=min(minn[i][j-1],minn[i+(1<<j-1)][j-1]);
          }
    }
    int main()
    {
        memset(maxn,-1,sizeof(maxn));
        memset(minn,127/3,sizeof(minn));
        n=init();m=init();
        for(int i=1;i<=n;i++)
        {
            f[i][0]=init();
            maxn[i][0]=minn[i][0]=f[i][0];
        }
        prepare();
        for(int i=1;i<=m;i++)
        {
            l=init();r=init();
            int k=double(log(r-l+1.0))/double(log(2.0));
            x=max(maxn[l][k],maxn[r-(1<<k)+1][k]);
            y=min(minn[l][k],minn[r-(1<<k)+1][k]);
            cout<<x-y<<endl;
        }
        return 0;
    }

    分析:
    st表算法适合询问次数较多的情况,而且代码长度比线段树要短,使用较方便。线段树代码长度较长,但是功能上完爆st表。

  • 相关阅读:
    数据分析系统DIY1/3:CentOS7+MariaDB安装纪实
    NSArray与NSString、NSData,NSDictionary与NSString、NSData 相互转化
    Geek地生活,文艺地思考
    Android开发中遇到的问题(五)——Eclipse导入Android项目出现"Invalid project description overlaps the location of another project"错误的解决办法
    Android开发中遇到的问题(四)——Android中WARNING: Application does not specify an API level requirement!的解决方法
    Android开发中遇到的问题(三)——eclipse创建android项目无法正常预览布局文件
    Android开发中遇到的问题(二)——新建android工程的时候eclipse没有生成MainActivity和layout布局
    Android开发学习总结(三)——appcompat_v7项目说明
    Android开发学习总结(二)——使用Android Studio搭建Android集成开发环境
    Android开发学习总结(一)——搭建最新版本的Android开发环境
  • 原文地址:https://www.cnblogs.com/cax1165/p/6070990.html
Copyright © 2011-2022 走看看