zoukankan      html  css  js  c++  java
  • 关于梯度下降

    批量梯度下降法BGD

      通过对所有的样本的计算来求解梯度的方向

    小批量梯度下降法MBGD  Minibatch

      通过对一部分个样本 (batch_size个) 的计算来求解梯度的方向

      增大batch_size:

        内存利用率提高,但可能遇到内存不足的问题

        矩阵乘法的并行化效率提高

        跑完一次全数据集所需的迭代次数减少,对于相同数据量的处理速度加快。要想达到相同的精度,其所花费的时间增加,从而对参数的修正也就显得更加缓慢

        在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

    随机梯度下降法SGD  online training 在线学习

      每次仅仅对一个样本 (batch_size=1) 的计算来求解梯度的方向

      每次修正方向以各自样本的梯度方向修正,横冲直撞各自为政,难以达到收敛。如图所示:

      

     reference: https://blog.csdn.net/fuwenyan/article/details/53914371

  • 相关阅读:
    Zookeeper的ZAB协议
    Netty从入门到放弃,从放弃在到入门
    Java多线程-锁的原理
    ContextLoaderListener的说明
    Jdk和Cglib 的区别
    zookeeper核心概念
    https
    [CS Academy] Infinity Array
    [JZOJ 5669] Permutaition
    [CF 613 Div.1E] Puzzle Lover
  • 原文地址:https://www.cnblogs.com/cbattle/p/9460426.html
Copyright © 2011-2022 走看看