zoukankan      html  css  js  c++  java
  • CF 15B【Laser】、C 【Industrial Nim】

    B

    题意

    给出(n imes m)的一块巧克力,再给出两个点,两点只能同时移动,两点所占位置巧克力会融化,问所有能走位置走遍之后还剩下几块巧克力。

    Idea

    题目就是给两个矩形,然后算两个点所走位置的并集对于全集的补集。点都可以变成左上方一个点和右下方,然后可以分成两种情况。第一种是两个所走矩形不相交,第二种是相交。
    如图
    0.001.jpg
    求蓝色部分的面积

    Code

    //n,m<=le9->m*n<=1e18,要开long long
    signed main(){ 
    	int T=read();
    	while(T--){
    		int n=read(),m=read(),x1=read(),yy=read(),x2=read(),y2=read();
    		int a,b,sum;
    		if(yy>y2) swap(yy,y2);
    		if(x1>x2) swap(x1,x2);
    		a=abs(x2-x1); b=abs(y2-yy);
    		a=x1+n-x2; b=yy+m-y2;
    		sum=a*b*2;
    		if(a*2>n&&b*2>m) sum-=(a*2-n)*(b*2-m);
    		sum=n*m-sum;
    		printf("%I64d
    ",sum);
    	} 
    	return 0;
    }
    

    C

    Idea

    本题的暴力的话,就是裸的(NIM)游戏,将每堆石子的数量异或一下,判断如果异或和不为零的话,先手必胜,否则后手必胜。但我们发现这个算法的瓶颈在于(m)的值非常大,我们试想一下是否可以快速求一段区间的异或和。
    对于区间([l,r])的异或值,等价于([1,l-1] Xor [1,r]),因为异或两遍([1,l-1])区间相当于没异或。我们的目标就是求出([1,x])
    先打表
    0.02.png
    (i mod 4=1;sum=1)
    (i mod 4=2;sum=i+1)
    (i mod 4=3;sum=0)
    (i mod 4=0;sum=i)

    Code

    
    inline int solve(int x){
    	if(x==0) return 0;
    	if(x%4==1) return 1;
    	if(x%4==2) return x+1;
    	if(x%4==3) return 0;
    	if(x%4==0) return x;
    }
    signed main(){ 
    	int n=read(); int flag=0;
    	for(int i=1;i<=n;i++){
    		int x=read(),m=read();
    		int l=x,r=x+m-1;
    		flag^=solve(r)^solve(l-1);
    	}
    	if(flag) puts("tolik");
    	else puts("bolik");
    	return 0;
    }
    
  • 相关阅读:
    [Unity3D]查看与设置游戏帧数FPS
    [Unity3D]关于NaN(Not a Number)的问题
    Unity3D在WebPlayer模式下的异常上报探索
    .net错误处理机制
    .Net 下未捕获异常的处理
    Appstore 提交时错误
    播放器设置 Player Settings
    (转)WebApi发送HTML表单数据:文件上传与多部分MIME
    (转)那些年我们一起清除过的浮动
    AppCan上下拉列表刷新
  • 原文地址:https://www.cnblogs.com/cbyyc/p/11493523.html
Copyright © 2011-2022 走看看