zoukankan      html  css  js  c++  java
  • poj 3264 Balanced Lineup(线段数求区间最大最小值)

    链接:http://poj.org/problem?id=3264

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 32772   Accepted: 15421
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0


    =====================================================================
    思路也很清晰,就是重新弄一个root[]数组求最小值,开始把minn设为0,找了好久才找到

    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <iostream>
    
    using namespace std;
    #define Maxx 50010
    int str[Maxx],root[Maxx<<2],root1[Maxx<<2];
    int n;
    int minn,maxx;
    
    void make_tree(int l,int r,int rt)
    {
        if(l == r)
        {
            root[rt]=str[l];
            root1[rt]=str[l];
            return ;
        }
    
        int mid=(l+r)/2;
        make_tree(l,mid,rt*2);
        make_tree(mid+1,r,rt*2+1);
        root[rt]=max(root[rt*2],root[rt*2+1]);
        root1[rt]=min(root1[rt*2],root1[rt*2+1]);
    }
    
    void update(int l,int r,int rt,int a,int b)
    {
        if(l == r && l == a)
        {
            root[rt]=b;
            root1[rt]=b;
            return ;
        }
    
        int mid=(l+r)/2;
        if(a<=mid)
            update(l,mid,rt*2,a,b);
        else
            update(mid+1,r,rt*2+1,a,b);
    
        root[rt]=max(root[rt*2],root[rt*2+1]);
        root1[rt]=min(root1[rt*2],root1[rt*2+1]);
    }
    
    void query(int l,int r,int rt,int left,int right)
    {
        if(l == left&&r == right)
        {
            maxx=max(maxx,root[rt]);
            minn=min(minn,root1[rt]);
            return ;
        }
    
        int mid=(l+r)/2;
        if(left>mid)
        {
            query(mid+1,r,rt*2+1,left,right);
        }
        else if(right<=mid)
        {
            query(l,mid,rt*2,left,right);
        }
        else
        {
            query(l,mid,rt*2,left,mid);
            query(mid+1,r,rt*2+1,mid+1,right);
        }
    }
    
    int main()
    {
        int q;
        int i,j;
        int a,b;
        while(scanf("%d%d",&n,&q)!=EOF)
        {
            for(i=1;i<=n;i++)
            {
                scanf("%d",&str[i]);
            }
            make_tree(1,n,1);
            for(i=1;i<=q;i++)
            {
                minn=100000000;maxx=0;
                scanf("%d%d",&a,&b);
                query(1,n,1,a,b);
                printf("%d
    ",maxx-minn);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    对象关系一对多转换为一对一的方案——中介者模式总结
    接口转换的利器——适配器模式总结
    多线程场景设计利器:分离方法的调用和执行——命令模式总结
    对比总结三个工厂模式(简单工厂,工厂方法,抽象工厂)
    创建多个“产品”的方式——工厂方法模式总结
    Java反射+简单工厂模式总结
    最简单的设计模式——单例模式的演进和推荐写法(Java 版)
    对复合(协作)算法/策略的封装方法——装饰模式总结
    Java对象序列化全面总结
    创建产品族的方式——抽象工厂模式
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3841135.html
Copyright © 2011-2022 走看看