zoukankan      html  css  js  c++  java
  • POJ3114 Countries in War 缩点+SPFA

    /*
    *State: HDU3072 328MS 2648K 2039 B C++ 
    *题目大意:
    *        有一个含边权有向图,然后有向图中的强连通分量里面通信不需要
    *        权值,要求从0点开始向所有的点通信,然后求最后总权值最小。
    *解题思路:
    *        看到强连通分量不需要权值即可通信,就想到缩点。缩点之后就是一个
    *       DAG,然后这个DAG里面的除了起始点0之外,所有点都要走一次,那么
    *        想清楚了其实就是每一个点有多条入度边,只需要找其中权值最小的
    *        一条入度边即可,然后实现这个过程可以在缩点的过程中实现。
    *解题感想;
    *        一看到这道题,由于心急,还是没有分析清楚,所以还搞了个spfa.这样
    *        是不行的,也证明了自己学的算法少,学的算法都不够熟练,肚子里面的
    *        墨水太少了。
    */
    View Code
    #include <iostream>
    #include <vector>
    #include <cstdio>
    #include <queue>
    #include <cstring>
    using namespace std;
    
    const int MAXN = 50005;
    const int MAXE = 100005;
    const int inf = 0x3f3f3f3f;
    
    typedef struct _node
    {
        int v, next, w;
    }N;
    N edge[MAXE];
    int head[MAXN], cntEdge, dfn[MAXN], low[MAXN];
    int step, top, inS[MAXN], myS[MAXN];
    int scc, id[MAXN];
    
    void init()
    {
        scc = 1;
        cntEdge = top = step = 0;
        for(int i = 0; i < MAXN; i++)
        {
            inS[i] = 0;
            head[i] = low[i] = dfn[i] = -1;
        }
    }
    
    void addEdge(int u, int v, int w)
    {
        edge[cntEdge].v = v;
        edge[cntEdge].w = w;
        edge[cntEdge].next = head[u];
        head[u] = cntEdge++;
    }
    
    void tarjan_scc(int n)
    {
        dfn[n] = low[n] = ++step;
        myS[top++] = n;
        inS[n] = 1;
        for(int f = head[n]; f != -1; f = edge[f].next)
        {
            int son = edge[f].v;
            if(dfn[son] == -1)
            {
                tarjan_scc(son);
                low[n] = min(low[n], low[son]);
            }
            else if(inS[son] == 1)
                low[n] = min(low[n], dfn[son]);
        }
    
        if(low[n] == dfn[n] && top != 0)
        {
            int tmp;
            do
            {
                tmp = myS[--top];
                id[tmp] = scc;
                inS[tmp] = 0;
            }while(top != 0 && tmp != n);
            scc++;
        }
    }
    
    void bulid_ADG(int n, int &sol)
    {
        int u, v, w;
        int edge_cost[MAXN];
        for(int i = 0; i < n; i++)
            edge_cost[i] = inf;
        for(int i = 0; i < n; i++)
        {
            for(int f = head[i]; f != -1; f = edge[f].next)
            {
                u = i, v = edge[f].v, w = edge[f].w;
                if(id[u] == id[v])
                    continue;
                else
                {
                    if(w < edge_cost[id[v]])
                        edge_cost[id[v]] = w;
                }
            }
        }
        sol = 0;
        for(int i = 1; i < scc; i++)
        {
            if(id[0] == i)
                continue;
            sol += edge_cost[i];
        }
    }
    
    //注意题目有重边
    int main(void)
    {
    #ifndef ONLINE_JUDGE
        freopen("inHDU3072.txt", "r", stdin);
    #endif
    
        int n, m;
        while(scanf("%d %d", &n, &m) == 2)
        {
            init();
            int u, v, w;
            for(int i = 0; i < m; i++)
            {
                scanf("%d %d %d", &u, &v, &w);
                addEdge(u, v, w);
            }
    
            tarjan_scc(0);
    
            int sol;
            bulid_ADG(n, sol);
            printf("%d\n", sol);
        }
        return 0;
    }
  • 相关阅读:
    小程序入门
    页面滚动触底加载
    js取整
    【Codeforces 1389D】Segment Intersections
    【Codeforces 1385 E】Directing Edges
    【Codeforces 1369D】TediousLee
    【Codeforces Global Round 9 D】Replace by MEX
    【Codeforces Global Round 9 C】Element Extermination
    【Codeforces Round #639 (Div. 2) A】Puzzle Pieces
    【Codeforces Round #639 (Div. 2) B】Card Constructions
  • 原文地址:https://www.cnblogs.com/cchun/p/2645072.html
Copyright © 2011-2022 走看看