Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Line 1: Two space-separated integers:
N and
K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17Sample Output
4Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题意 : 农民有3种走路方式 , 问怎么走可以最短到达目标位置。
思路 : BFS 走感觉还是很好想到的 , 之前一直有一个地方不是很理解 ,就是搜素图的时候什么要标记走过的点什么时候不标记走过的点,现在差不多懂点了 ,每走一步,就把当前这步所有可以到达的位置全部找到,之前走过的点不计入。还有在求步数的搜索题中,特意建一个数组,当前位置的步数等于上一次所走的步数 +1 。
代码 :
/* * Author: ry * Created Time: 2017/10/26 9:33:23 * File Name: 2.cpp */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <string> #include <vector> #include <stack> #include <queue> #include <set> #include <map> #include <time.h> using namespace std; const int eps = 1e5+5; const double pi = acos(-1.0); const int inf = 0x3f3f3f3f; #define Max(a,b) a>b?a:b #define Min(a,b) a>b?b:a #define ll long long int n, k; int bu[eps]; void bfs(){ queue<int>que; que.push(n); //memset(vis, 0, sizeof(vis)); memset(bu, -1, sizeof(bu)); bu[n] = 0; while (!que.empty()){ int a = que.front(); que.pop(); if (a == k) break; for(int i = 0; i < 3; i++){ if (i == 0) { int b = a - 1; if (b >= 0 && b < eps && bu[b] == -1){ que.push(b); bu[b] = bu[a] + 1; } } else if (i == 1){ int b = a + 1; if (b >= 0 && b < eps && bu[b] == -1){ que.push(b); bu[b] = bu[a] + 1; } } else { int b = 2*a; if (b >= 0 && b < eps && bu[b] == -1){ que.push(b); bu[b] = bu[a] + 1; } } } } } int main (){ while (~scanf("%d%d", &n, &k)){ bfs(); //for(int i = 1; i <= k; i++){ //printf("%d ", bu[i]); //} //printf(" "); printf("%d ", bu[k]); } }