zoukankan      html  css  js  c++  java
  • 枚举 + 三分

    Define the simple skewness of a collection of numbers to be the collection's mean minus its median. You are given a list of n (not necessarily distinct) integers. Find the non-empty subset (with repetition) with the maximum simple skewness.

    The mean of a collection is the average of its elements. The median of a collection is its middle element when all of its elements are sorted, or the average of its two middle elements if it has even size.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of elements in the list.

    The second line contains n integers xi (0 ≤ xi ≤ 1 000 000) — the ith element of the list.

    Output

    In the first line, print a single integer k — the size of the subset.

    In the second line, print k integers — the elements of the subset in any order.

    If there are multiple optimal subsets, print any.

    Example
    Input
    4
    1 2 3 12
    Output
    3
    1 2 12
    Input
    4
    1 1 2 2
    Output
    3
    1 1 2
    Input
    2
    1 2
    Output
    2
    1 2
    Note

    In the first case, the optimal subset is , which has mean 5, median 2, and simple skewness of 5 - 2 = 3.

    In the second case, the optimal subset is . Note that repetition is allowed.

    In the last case, any subset has the same median and mean, so all have simple skewness of 0.

    题目分析 : mean 平均值

    从 n 个数中选出任意个,让其平均值减去中位数答案最大,首先答案一定是奇数个,反证法,若你是偶数个数,当你去掉正中间稍大的那个后,所求答案一定是大于之前的情况的,

     

    那么根据这个条件我们就可以枚举中位数,然后再三分长度即可,因为当长度是 0 的时候,答案也为 0 ,当长度增加时,答案也在增加,在往后增加时,答案会变小,所以一定存在一个极致,三分即可

    代码示例 :

    #define ll long long
    const ll maxn = 2e5+5;
    const double pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f;
    
    ll n;
    ll pre[maxn], sum[maxn];
    ll pos = 1, len = 0;
    double ans = 0;
    
    double fun(ll lenn, ll x){
        ll s = 0;
        s += sum[x] - sum[x-lenn-1];
        s += sum[n] - sum[n-lenn];
        double mean = 1.0*s/(1+lenn*2);
        return mean-1.0*pre[x];
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        cin >> n;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &pre[i]); 
        }
        sort(pre+1, pre+1+n);
        for(ll i = 1; i <= n; i++) sum[i] = sum[i-1] + pre[i];
        for(ll i = 2; i < n; i++){
            ll l = 1, r = min(i-1, n-i);
            for(ll j = 1; j <= 50; j++) {  
                ll lm = l + (r - l)/3;
                ll rm = r - (r - l)/3;
                double lf = fun(lm, i);
                double rf = fun(rm, i);
                
                if (lf > rf) r = rm;
                else l = lm;
                if (lf > ans) {pos = i; len = lm; ans = lf;}
                if (rf > ans) {pos = i; len = rm; ans = rf;}
            }
        }
        printf("%lld
    ", len*2+1);
        for(ll i = pos-len; i <= pos; i++){
            printf("%lld ", pre[i]);
        }   
        for(ll i = n-len+1; i <= n; i++){
            printf("%lld%c", pre[i], i==n?'
    ':' ');
        }
        return 0;
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    iOS多线程开发小demo5 线程间的通信
    iOS多线程开发小demo4,线程的同步问题
    iOS多线程开发小demo3,线程的状态
    iOS多线程开发小demo2,NSThread篇
    iOS多线程开发小demo
    iOS开发多线程基础知识
    sublime text 3 3083 注册码
    Canvas现实画板功能
    CSS3动画进度条
    移动端使用HTML5表单增强体验
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8457846.html
Copyright © 2011-2022 走看看