You are given a tree, it’s root is p, and the node is numbered from 1 to n. Now define f(i) as the number of nodes whose number is less than i in all the succeeding nodes of node i. Now we need to calculate f(i) for any possible i.
InputMultiple cases (no more than 10), for each case:
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.OutputFor each test case, output n integer in one line representing f(1), f(2) … f(n), separated by a space.Sample Input
15 7 7 10 7 1 7 9 7 3 7 4 10 14 14 2 14 13 9 11 9 6 6 5 6 8 3 15 3 12 0 0Sample Output
0 0 0 0 0 1 6 0 3 1 0 0 0 2 0
题意 : 给你一颗带根的树,询问每个结点他的孩子中比他小的点的个数
思路分析: 对于一颗树我们可以找到他的 dfs序,将其变成一维的数组的结构,在寻找的同时再添加一个时间戳,然后树状数组维护下标就可以,当然主席树也可以
代码示例 :
#define ll long long
const int maxn = 1e5+5;
const int mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
int n, p;
vector<int>ve[maxn];
int s[maxn], e[maxn];
int cnt = 0;
void dfs(int x, int fa){
s[x] = ++cnt;
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue;
dfs(to, x);
}
e[x] = cnt;
}
int ans[maxn];
int c[maxn];
int lowbit(int x){return x&(-x);}
void add(int x){
int sum = 0;
for(int i = x; i <= n; i += lowbit(i)){
c[i]++;
}
}
int query(int x){
int sum = 0;
for(int i = x; i >= 1; i -= lowbit(i)){
sum += c[i];
}
return sum;
}
int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int a, b;
while(scanf("%d%d", &n, &p) && n+p){
for(int i = 1; i <= n; i++) ve[i].clear();
cnt = 0;
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(p, 0);
memset(c, 0, sizeof(c));
for(int i = 1; i <= n; i++){
int st = s[i];
int et = e[i];
ans[i] = query(et)-query(st-1);
add(st);
}
for(int i = 1; i <= n; i++){
printf("%d%c", ans[i], i==n?'
':' ');
}
}
return 0;
}