题意:已知xi=(a*xi-1+b) mod 10001,且告诉你x1,x3.........x2*t-1,让你求出其偶数列
思路分析 : 题目所要求的的是对 10001 取余,由模运算的性质可知,a 在经过取模后一定是 0 - 10000 范围内的一个数,那么我们就可以枚举 a
在利用 x2, x3 的式子代入化简,最终得到的式子是类似 exgcd 的,直接求就可以。
代码示例 :
#define ll long long const ll maxn = 1e6+5; const ll mod = 10001; const double eps = 1e-9; const double pi = acos(-1.0); const ll inf = 0x3f3f3f3f; ll n; ll pre[105]; ll mid[205]; void exgcd(ll a, ll b, ll &g, ll &x, ll &y){ if (b == 0){ g = a; x = 1; y = 0;} else {exgcd(b, a%b, g, y, x); y -= x*(a/b);} } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); cin >> n; for(ll i = 1; i <= n; i++){ scanf("%lld", &pre[i]); } ll g, b, k; for(ll i = 0; i <= 10000; i++){ ll f = (pre[2]-i*i*pre[1]); exgcd(mod, i+1, g, k, b); if (f % g) continue; b = b*(f/g)%mod; mid[1] = pre[1]; for(ll j = 2; j <= 2*n; j++){ mid[j] = (i*mid[j-1]+b+mod)%mod; } ll sign = 0; for(ll j = 1; j <= 2*n; j += 2){ if (mid[j] != pre[(j+1)/2]){ sign = 1; break; } } if (!sign){ break; } } for(ll j = 2; j <= 2*n; j += 2){ printf("%lld ", mid[j]); } return 0; }