在分析了KVM中对虚拟机各级地址(gva->gpa->hva->hpa)的转换之后,想要知道qemu中又是如何完成各级地址转换的,因此对qemu中对虚拟机内存管理的相关数据结构与源码进行了分析。qemu中对于虚拟机内存管理涉及的数据结构较多,仅gpa->hpa的转换过程涉及的数据结构就有:MemoryRegion, AddressSpace, MemoryRegionSection, Flatview, FlatRange, RAMBlock, RAMList等。
这几个数据结构的关系刚接触时有些混乱,以下试图从gpa到hva的转换来整理这几个数据结构之间的关系。
qemu源码版本为qemu-2.8.0
一、MemoryRegion
QEMU通过MemoryRegion来管理虚拟机内存,通过内存属性,GUEST物理地址等特点对内存分类,就形成了多个MemoryRegion,这些MemoryRegion 通过树状组织起来,挂接到根MemoryRegion下。每个MemoryRegion树代表了一类作用的内存,如系统内存空间(system_memory)或IO内存空间(system_io),这两个是qemu中的两个全局MemoryRegion。
struct MemoryRegion { Object parent_obj; /* All fields are private - violators will be prosecuted */ /* The following fields should fit in a cache line */ bool romd_mode; bool ram; bool subpage; bool readonly; /* For RAM regions */ bool rom_device; bool flush_coalesced_mmio; bool global_locking; uint8_t dirty_log_mask; RAMBlock *ram_block; //指向对应的RAMBlock Object *owner; const MemoryRegionIOMMUOps *iommu_ops; const MemoryRegionOps *ops; void *opaque; MemoryRegion *container; //指向父MR Int128 size; //区域大小 hwaddr addr; //在父MR中的偏移量 void (*destructor)(MemoryRegion *mr); uint64_t align; bool terminates; bool ram_device; bool enabled; bool warning_printed; /* For reservations */ uint8_t vga_logging_count; MemoryRegion *alias; //指向实体MR hwaddr alias_offset;// 起始地址 (GPA) 在实体 MemoryRegion 中的偏移量 int32_t priority; QTAILQ_HEAD(subregions, MemoryRegion) subregions; //子区域链表头 QTAILQ_ENTRY(MemoryRegion) subregions_link; //子区域链表结点 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; const char *name; unsigned ioeventfd_nb; MemoryRegionIoeventfd *ioeventfds; QLIST_HEAD(, IOMMUNotifier) iommu_notify; IOMMUNotifierFlag iommu_notify_flags; };
MemoryRegion 表示在 Guest memory layout 中的一段内存,可将 MemoryRegion 划分为以下三种类型:
- 根级 MemoryRegion: 直接通过 memory_region_init 初始化,没有自己的内存,用于管理 subregion。如 system_memory
- 实体 MemoryRegion: 通过 memory_region_init_ram 初始化,有自己的内存 (从 QEMU 进程地址空间中分配),大小为 size 。如 ram_memory(pc.ram) 、 pci_memory(pci) 等。 这种MemoryRegion中真正的分配物理内存,最主要的就是pc.ram和pci。分配的物理内存的作用分别是内存、PCI地址空间以及fireware空间。QEMU是用户空间代码,分配的物理内存返回的是hva,hva保存至RAMBlock的host域。通过实体MemoryRegion对应的RAMBlock可以管理HVA。
- 别名 MemoryRegion: 通过 memory_region_init_alias 初始化,没有自己的内存,表示实体 MemoryRegion(如 pc.ram) 的一部分,通过 alias 成员指向实体 MemoryRegion,alias_offset 代表了该别名MemoryRegion所代表内存起始GPA相对于实体 MemoryRegion 所代表内存起始GPA的偏移量。如 ram_below_4g 、ram_above_4g 等。
代码中常见的 MemoryRegion 关系为:
alias ram_memory (pc.ram) - ram_below_4g(ram-below-4g) - ram_above_4g(ram-above-4g) sub system_memory(system) - ram_below_4g(ram-below-4g) - ram_above_4g(ram-above-4g) - pcms->hotplug_memory.mr 热插拔内存
实际上虚拟机的ram申请时是一次性申请的一个完成的ram,记录在一个MR中,之后又对此ram按照size进行了划分,形成subregion,而subregion 的alias便指向原始的MR,而alias_offset 便是在原始ram中的偏移。对于系统地址空间的ram,会把刚才得到的subregion注册到系统中,父MR是刚才提到的全局MR system_memory,subregions_link是链表节点。addr是子MR相对于父MR的偏移,在函数pc_memory_init()函数中有对实体MemoryRegion和别名MemoryRegion的初始化:
void pc_memory_init(PCMachineState *pcms, MemoryRegion *system_memory, MemoryRegion *rom_memory, MemoryRegion **ram_memory) { int linux_boot, i; MemoryRegion *ram, *option_rom_mr; MemoryRegion *ram_below_4g, *ram_above_4g; FWCfgState *fw_cfg; MachineState *machine = MACHINE(pcms); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); assert(machine->ram_size == pcms->below_4g_mem_size + pcms->above_4g_mem_size); linux_boot = (machine->kernel_filename != NULL); /* Allocate RAM. We allocate it as a single memory region and use * aliases to address portions of it, mostly for backwards compatibility * with older qemus that used qemu_ram_alloc(). */ ram = g_malloc(sizeof(*ram)); memory_region_allocate_system_memory(ram, NULL, "pc.ram", machine->ram_size); //初始化实体MR pc.ram *ram_memory = ram; ram_below_4g = g_malloc(sizeof(*ram_below_4g)); memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 0, pcms->below_4g_mem_size); //初始化别名MR ram_below_4g,将其alias指向ram,alias_offset为0 memory_region_add_subregion(system_memory, 0, ram_below_4g); //将别名MRram_below_4g添加为system_memory的subregion,设置偏移addr为0 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); if (pcms->above_4g_mem_size > 0) { ram_above_4g = g_malloc(sizeof(*ram_above_4g)); memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, pcms->below_4g_mem_size, pcms->above_4g_mem_size); //初始化别名MR ram_above_4g,将其alias指向ram,alias_offset为below_4g_mem_size memory_region_add_subregion(system_memory, 0x100000000ULL, ram_above_4g);//同上述ram_below_4g,初始化并添加ram_above_4g,设置偏移addr为0x100000000ull,即4g e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); }
void memory_region_init_alias(MemoryRegion *mr, Object *owner, const char *name, MemoryRegion *orig, hwaddr offset, uint64_t size) { memory_region_init(mr, owner, name, size); mr->alias = orig; //别名MR的alias指向原实体MR mr->alias_offset = offset; //alias_offset表示偏移 } static void memory_region_add_subregion_common(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { assert(!subregion->container); subregion->container = mr; subregion->addr = offset; //将addr设置为offset memory_region_update_container_subregions(subregion); } void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { subregion->priority = 0; memory_region_add_subregion_common(mr, offset, subregion); }
可见subregion的addr即为相对于父MR的偏移,对于ram_below_4g,addr为0,对于ram_above_4g,偏移则为4g,而alias_offset为相对于实体MR的偏移量,对于ram_below_4g,alias_offset为0,对于ram_above_4g,alias_offset为ram_below_4g_size,即为4g。
二、RAMBlock
上面提到了qemu为虚拟机分配的内存的hva保存在RAMblock的host域,RAMBlock的定义如下:
struct RAMBlock { struct rcu_head rcu; // 用于保护 Read-Copy-Update struct MemoryRegion *mr; // 对应的 MemoryRegion uint8_t *host; // 对应的 HVA ram_addr_t offset; // 在 ram_list 地址空间中的偏移 (要把前面 block 的 size 都加起来) ram_addr_t used_length; // 当前使用的长度 ram_addr_t max_length; // 总长度 void (*resized)(const char*, uint64_t length, void *host); // resize 函数 uint32_t flags; /* Protected by iothread lock. */ char idstr[256]; // id /* RCU-enabled, writes protected by the ramlist lock */ QLIST_ENTRY(RAMBlock) next; // 指向在 ram_list.blocks 中的下一个 block int fd; // 映射文件的文件描述符 size_t page_size; // page 大小,一般和 host 保持一致 };
一个RAMBlock表示一段虚拟内存,host域指向申请的ram的虚拟地址,即hva。所有的RAMBlock通过next字段连接起来,表头保存在全局RAMList中,offset表示当前RAMBlock在RAMList中的偏移。每个RAMBlock都有一个唯一的MemoryRegion对应,但需要注意的是不是每个MemoryRegion都有RAMBlock对应。
在函数pc_memory_init()中为实体memoryregion分配内存时,调用了函数memory_region_allocate_system_memory(),非numa架构下调用函数allocate_system_memory_nonnuma(),继而调用memory_region_init_ram_from_file():
#ifdef __linux__ void memory_region_init_ram_from_file(MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, bool share, const char *path, Error **errp) { memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp); //实体MR指向的RAM_BLOCK为qemu_ram_alloc_from_file函数返回的RAMBlock mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0; } #endif
函数 qemu_ram_alloc_from_file()中申请并设置RAMBlock,RAMBlock->host 为函数file_ram_alloc()函数的返回值,该函数使用对应路径的(设备)文件来分配内存,调用qemu_ram_mmap()通过mmap方式进行内存分配,可见RAMBlock->host 则为分配的内存的hva的起始地址。
static void *file_ram_alloc(RAMBlock *block, ram_addr_t memory, const char *path, Error **errp) { ...... area = qemu_ram_mmap(fd, memory, block->mr->align, block->flags & RAM_SHARED);//通过mmap在qemu的进程地址空间中进行地址分配 if (area == MAP_FAILED) { error_setg_errno(errp, errno, "unable to map backing store for guest RAM"); goto error; }
上述为对实体MemoryRegion “pc.ram” 内存的分配,在为别名MemoryRegion“ram-below-4g”和“ram-above-4g”初始化时调用的是函数memory_region_init_alias(), 该函数调用memory_region_init()
void memory_region_init(MemoryRegion *mr, Object *owner, const char *name, uint64_t size) { object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION); mr->size = int128_make64(size); if (size == UINT64_MAX) { mr->size = int128_2_64(); } mr->name = g_strdup(name); mr->owner = owner; mr->ram_block = NULL; //别名MR的ram_block设置为null ....... }
在该函数中将别名MR的ram_block设置为NULL,而“pc.ram”指向的ram_block是有内容的,可见不是所有的MemoryRegion都有对应的RAMBlock,对于分配的RAMBlock,最后会将其插入到全局链表RAMList中。
上述对结构体MemoryRegion和RAMblock的分析可知,对于系统内存而言(不考虑io)实体MemoryRegion是有具体内存的,而别名MemoryRegion是对实体MR不同分段的一个指向,其alias指向实体MR。别名MR都是根级MR system_memory的subregion,通过RAMBlock,可以知道一个MemoryRegion对应内存的hva,其关系大致如下:
三、AddressSpace
从GPA与hva的角度来看,如果以结构体MemoryRegion为核心的话,RAMBlock可以看成是对该片内存区域hva的关联,而AddressSpace在我看来可以看做是对该片内存区域GPA的一个关联,从其注释AddressSpace: describes a mapping of addresses to #MemoryRegion objects也可看出。
这里我有一个疑问:在qemu-2.3.0版本的源码中,结构体MemoryRegion中有一个变量ram_addr表示该片内存区域的GPA的起始地址,而在qemu-2.8.0中,结构体MemoryRegion中没有了这个变量。猜想对于实体MR而言,其addr变量是否就表示为该片内存区域GPA的起始地址,如果是的话,那么对于subregion而言,其alias_offset加上实体addr即可表示该片MemoryRegion的GPA起始地址,加上实体MR对应的RAMBlock,应该就可以实现GPA到HVA的映射了,那么AddressSpace的作用又是什么,其意义何在?先提出这个疑问,看看后续能否得到解答。
/** * AddressSpace: describes a mapping of addresses to #MemoryRegion objects */ struct AddressSpace { /* All fields are private. */ struct rcu_head rcu; char *name; MemoryRegion *root; //指向根MR int ref_count; bool malloced; /* Accessed via RCU. */ struct FlatView *current_map; // 指向当前维护的 FlatView,在 address_space_update_topology 时作为 old 比较 int ioeventfd_nb; struct MemoryRegionIoeventfd *ioeventfds; struct AddressSpaceDispatch *dispatch; // 负责根据 GPA 找到 HVA struct AddressSpaceDispatch *next_dispatch; MemoryListener dispatch_listener; QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; QTAILQ_ENTRY(AddressSpace) address_spaces_link; };
结构体AddressSpace用来表示虚拟机的一片地址空间,不同的设备使用的地址空间不同,但qemu x86中只有两种, address_space_memory和address_space_io,这也是两个全局的address_space变量,所有设备的地址空间都被映射到了这两个上面。其root指向根MemoryRegion, 对于全局变量address_space_memory而言,其root指向系统全局的system_memory,address_space_io的root则指向system_io.由于根MR可能有自己的若干个subregion,因此每个AddressSpace一般包含一系列MemoryRegion,形成树状结构。
AddressSpace中的current_map指向当前维护的FlatView:
/* * Note that signed integers are needed for negative offsetting in aliases * (large MemoryRegion::alias_offset). */ struct AddrRange { Int128 start; //起始 Int128 size; //大小 }; /* Range of memory in the global map. Addresses are absolute. */ struct FlatRange { MemoryRegion *mr; //指向所属的MR hwaddr offset_in_region; //在MR中的offset AddrRange addr; //本FR代表的区间 uint8_t dirty_log_mask; bool romd_mode; bool readonly; }; /* Flattened global view of current active memory hierarchy. Kept in sorted * order. */ struct FlatView { struct rcu_head rcu; unsigned ref; //引用计数,为0就销毁 FlatRange *ranges; //对应的flatrange数组 unsigned nr; //flatrange数目 unsigned nr_allocated; };
FlatView管理MR展开后得到的所有FlatRange,ranges是一个数组,记录FlatView下所有的FlatRange,每个FlatRange对应一段虚拟机物理地址区间,各个FlatRange不会重叠,按照地址的顺序保存在数组中。具体的范围由一个AddrRange结构描述,其描述了地址和大小。当memory region发生变化的时候,执行memory_region_transaction_commit,address_space_update_topology,address_space_update_topology_pass最终完成更新FlatView的目标。
FlatView结构如下,图源见水印:
由图片可知每个FlatRange的中的AddrRange的start为该段内存区间GPA的首地址,size则描述了该段区间的大小。那么结构体FlatRange中的offset_in_region是什么,是该flatrange相对于所属MR的offset?
与flatrange对应的是MemoryRegionSection:
/** * MemoryRegionSection: describes a fragment of a #MemoryRegion * * @mr: the region, or %NULL if empty * @address_space: the address space the region is mapped in * @offset_within_region: the beginning of the section, relative to @mr's start * @size: the size of the section; will not exceed @mr's boundaries * @offset_within_address_space: the address of the first byte of the section * relative to the region's address space * @readonly: writes to this section are ignored */ struct MemoryRegionSection { MemoryRegion *mr; // 指向所属 MemoryRegion AddressSpace *address_space; // 所属 AddressSpace hwaddr offset_within_region; // 起始地址 (HVA) 在 MemoryRegion 内的偏移量 Int128 size; hwaddr offset_within_address_space; // 在 AddressSpace 内的偏移量,如果该 AddressSpace 为系统内存,则为 GPA 起始地址 bool readonly; };
MemoryRegionSection 指向 MemoryRegion 的一部分 ([offset_within_region, offset_within_region + size]),是注册到 KVM 的基本单位。
将 AddressSpace 中的 MemoryRegion 映射到线性地址空间后,由于重叠的关系,原本完整的 region 可能会被切分成片段,于是产生了 MemoryRegionSection。
其中偏移offset_within_region描述的是该section在其所属的MR中的偏移,一个address_space可能有多个MR构成,因此该offset是局部的。而offset_within_address_space是在整个地址空间中的偏移,是全局的offset,如果AddressSpace为系统内存,则该偏移则为GPA的起始地址。
到这里,借助函数kvm_set_phys_mem()中组装kvmslot,并通过kvm_userspace_memory_region将qemu的内存分布信息传递给kvm的部分过程整理一下上述数据结构中GPA到HVA的对应关系:
static void kvm_set_phys_mem(KVMMemoryListener *kml, MemoryRegionSection *section, bool add) { KVMState *s = kvm_state; KVMSlot *mem, old; int err; MemoryRegion *mr = section->mr; bool writeable = !mr->readonly && !mr->rom_device; hwaddr start_addr = section->offset_within_address_space; //获取GPA ram_addr_t size = int128_get64(section->size); void *ram = NULL; unsigned delta; /* kvm works in page size chunks, but the function may be called with sub-page size and unaligned start address. Pad the start address to next and truncate size to previous page boundary. */ delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask); delta &= ~qemu_real_host_page_mask; if (delta > size) { return; } start_addr += delta; //页对齐修正 size -= delta; size &= qemu_real_host_page_mask; if (!size || (start_addr & ~qemu_real_host_page_mask)) { return; } if (!memory_region_is_ram(mr)) { if (writeable || !kvm_readonly_mem_allowed) { return; } else if (!mr->romd_mode) { /* If the memory device is not in romd_mode, then we actually want * to remove the kvm memory slot so all accesses will trap. */ add = false; } } ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; //获取hva ....... }
GPA:在该函数中传入的参数为MemoryRegionSection,根据region section在AddressSpace中的偏移,即offset_within_address_space,加上页对齐修正(delta)得到该section的GPA,填入start_addr。
HVA: hva是通过该section所属的MR的起始HVA + 该region section在所属MR中的偏移量(offset_within_region)+页对齐修正(delta)得到。
该region section所属MR的起始HVA通过函数memory_region_get_ram_ptr()得到,该函数内容如下:
void *memory_region_get_ram_ptr(MemoryRegion *mr) { void *ptr; uint64_t offset = 0; rcu_read_lock(); while (mr->alias) { //追溯到实体MR为止 offset += mr->alias_offset; mr = mr->alias; } assert(mr->ram_block); ptr = qemu_map_ram_ptr(mr->ram_block, offset); //实体MR有对应的RAMBlock rcu_read_unlock(); return ptr; } void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) { RAMBlock *block = ram_block; if (block == NULL) { block = qemu_get_ram_block(addr); addr -= block->offset; } if (xen_enabled() && block->host == NULL) { /* We need to check if the requested address is in the RAM * because we don't want to map the entire memory in QEMU. * In that case just map until the end of the page. */ if (block->offset == 0) { return xen_map_cache(addr, 0, 0); } block->host = xen_map_cache(block->offset, block->max_length, 1); } return ramblock_ptr(block, addr); } static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) { assert(offset_in_ramblock(block, offset)); return (char *)block->host + offset; //hva的起始地址加上所有偏移得到最终hva }
在 memory_region_get_ram_ptr 中,如果当前MR是另一个MR的 alias,则会向上追溯,一直追溯到非 alias region(实体 region) 为止。将追溯过程中的 alias_offset 加起来,可以得到当前 region 在实体 region 中的偏移量。由于实体 region 具有对应的 RAMBlock,所以调用函数 qemu_map_ram_ptr ,将实体 region 对应的 RAMBlock 的 host 和总 offset 加起来,得到当前 region 的起始 HVA。
在函数qemu_map_ram_ptr()中,如果传入的ram_block为空,还可以根据当前region在实体region中的偏移量找到对应的ramblock,其调用qemu_get_ram_block()
static RAMBlock *qemu_get_ram_block(ram_addr_t addr) { RAMBlock *block; block = atomic_rcu_read(&ram_list.mru_block);//首先看是不是处于最近使用的block中 if (block && addr - block->offset < block->max_length) { //addr即为当前region相对于实体region的offset,若offset-当前block.offset小于该block的大小,说明该region对应的内存处于该block中 return block; } QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { //不在最近使用的block中,则遍历RAMList的所有block if (addr - block->offset < block->max_length) { goto found; } } fprintf(stderr, "Bad ram offset %" PRIx64 " ", (uint64_t)addr); abort(); ....... }
由于每一段内存都对应一个RAMblock,通过当前region相对于实体region的offset可以知道这段内存的大小,如果该段大小减去某个RAMBlock的offset小于该block的size,说明该段内存对应的hva在这段block中,否则则查找下一个。比如第一个block的offset为0,如果addr小于该block的大小,那么该block就是这段内存区域对应的block。
一些猜想及疑问:
1、虚拟机的GPA是从0开始的,由系统内存的初始化过程可以看出(不考虑io),初始时分配了一整片内存“pc.ram”及对应的RAMBlock,因此猜想MemoryRegion “pc.ram”的addr为起始GPA,即为0,其他region到该实体region的各级alias_offset之和应该就是该region的起始GPA。又MemoryRegionSection中的offset_within_address_space表示在所属AddressSpace中的偏移量,若该AS为系统内存,则为GPA的起始地址。那么各级subregion的alias_offset相加,再加上实体MR的addr是否就等于MemoryRegionSection中的offset_within_address_space。个人感觉应该是,但不确定,可通过实验进行相关验证。
2、若上述猜想是对的,那么由MemoryRegion及RAMBlock即可得到GPA到HVA的对应关系,那么之前提出的疑问:AddressSpace的意义何在?分析qemu的源码可知AddressSpace绑定了相关listener,当发生变化时会触发相关的listener,不能单从GPA到HVA的映射来考虑AddressSpace的意义。两个全局的AddressSpace(address_space_io,address_space_memory)串起了属于系统内存和io内存的所有memoryRegion,当内存发生变化时,会触发相关listener。所以个人认为AddressSpace可以更好地对不同级别的MemoryRegion进行管理,而不需要为各个MemoryRegion注册绑定listener。且由源码可以看出,MemoryRegion的偏移更偏向于应用得到该region对应于起始hva的偏移,从而计算该region的起始hva,而AddressSpace更偏向于应用于得到起始GPA。(若实体MR的addr为起始GPA,那么该MR到实体MR的偏移之和也可以用于得到该region的起始GPA,但源码中并没有应用此种方式,因为AddressSpace中的相关变量已经可以表示起始GPA了)
3、结构体FlatRange.addr.start就可以表示该段FlatRange的起始GPA,那么该结构体中的offset_in_region是什么,是其相对于所属的MR的offset,其意义又是什么?该问题从函数listener_add_address_space()中可以得到一些解答:
static void listener_add_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; ....... view = address_space_get_flatview(as);//获取as中的flatview FOR_EACH_FLAT_RANGE(fr, view) { //遍历flatview中的每个flatrange MemoryRegionSection section = { //新建一个memoryregionsection 并进行赋值 .mr = fr->mr, .address_space = as, .offset_within_region = fr->offset_in_region, .size = fr->addr.size, .offset_within_address_space = int128_get64(fr->addr.start), .readonly = fr->readonly, }; ...... }
由上述代码也可以看出FlatRange和MemoryRegionSection的对应关系,MemoryRegionSection中的offset_within_region即为FlatRange的offset_in_region,因此均表示为在所属MR中的偏移,若所属MR为全局MR,则表示为在全局MR中的偏移。同样的,MemoryRegionSection中的offset_within_address_space即为FlatRange.addr.start,表示GPA的起始地址。
补充一个在虚拟机退出时如何根据GPA找到HVA:https://www.anquanke.com/post/id/86412 链接中的第四小节对此进行了分析,主要原理是由AddressSpaceDispatch中的6级页表PhysPageMap实现,该页表的最后一级指向MemoryRegionSection,由MemoryRegionSection可以得到GPA对应的MR,由此得到HVA。
后续会分析结构体AddressSpace注册的listerner的一些操作,以及qemu如何把内存管理的信息传至KVM中,以及如何进行视图的更新。
以上仅是对qemu中管理虚拟机内存的一些数据结构的整理,由于个人理解及分析不够,存在着一些疑问及猜想,难免有不对的地方,欢迎大家提出疑问,指正错误。
参考:https://www.cnblogs.com/ck1020/p/6729224.html
https://www.binss.me/blog/qemu-note-of-memory/
http://oenhan.com/qemu-memory-struct
https://blog.csdn.net/leoufung/article/details/48781205