zoukankan      html  css  js  c++  java
  • Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) C. Success Rate

    C. Success Rate
    time limit per test2 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made y submissions, out of which x have been successful. Thus, your current success rate on Codeforces is equal to x / y.
    
    Your favorite rational number in the [0;1] range is p / q. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be p / q?
    
    Input
    The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test cases.
    
    Each of the next t lines contains four integers x, y, p and q (0 ≤ x ≤ y ≤ 109; 0 ≤ p ≤ q ≤ 109; y > 0; q > 0).
    
    It is guaranteed that p / q is an irreducible fraction.
    
    Hacks. For hacks, an additional constraint of t ≤ 5 must be met.
    
    Output
    For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.
    
    Example
    input
    4
    3 10 1 2
    7 14 3 8
    20 70 2 7
    5 6 1 1
    output
    4
    10
    0
    -1
    Note
    In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2.
    
    In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8.
    
    In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7.
    
    In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.
      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 typedef long long LL;
      4 void gcd(LL a, LL b, LL &d, LL &x, LL &y)
      5 {
      6     if (!b)
      7     {
      8         d = a;
      9         x = 1;
     10         y = 0;
     11     }
     12     else
     13     {
     14         gcd(b, a % b, d, y, x);
     15         y -= x * (a / b);
     16     }
     17 }
     18 LL t, x, y, p, q, g, a, b, c;
     19 LL dealZero(LL t)
     20 {
     21     if (c % t || c / t < 0)
     22         return -1;
     23     return c / t;
     24 }
     25 LL divab(LL a, LL b) //整数相除向小的数取整(负数取整绝对值会变大)
     26 {
     27     double x = double(a) / b;
     28     if (x >= 0)
     29         return (LL)x;
     30     return (LL)(x - 1 + 1e-9);
     31 }
     32 int main()
     33 {
     34     scanf("%lld", &t);
     35     while (t--)
     36     {
     37         scanf("%lld%lld%lld%lld", &x, &y, &p, &q);
     38         //(x+a)/(y+a+b)=p/q     a=? b=? min(a+b)=?(a>=0 && b>=0)
     39         LL t1 = q - p, t2 = -p;
     40         //t1*a + t2*b = p*y - q*x
     41         c = (LL)p * y - (LL)q * x;
     42         if (t1 == 0)
     43         {
     44             printf("%lld
    ", dealZero(t2));
     45             continue;
     46         }
     47         if (t2 == 0)
     48         {
     49             printf("%lld
    ", dealZero(t1));
     50             continue;
     51         }
     52         gcd(t1, t2, g, a, b); //a*t1+b*t2=g
     53         if (g < 0)
     54             a = -a, b = -b, g = -g;
     55         if (c % g)
     56         {
     57             printf("-1
    ");
     58             continue;
     59         }
     60         a *= c / g % (t2 / g);
     61         //b *= c / g;
     62         //************************************这里a,b乘完后后面处理会爆longlong
     63         a = a % (t2 / g);          //将结果先缩小
     64         b = (c - t1 / g * a) / t2; //会爆longlong
     65         //a*t1+b*t2=c
     66         //a*t1+k*t1*t2/g + b*t2 - k*t1*t2/g = c     变动相差一个t1,t2的最小共倍数t1*t2/g
     67         //(a+k*t2/g)*t1 + (b-k*t1/g)*t2=c
     68         //a+k*t2/g>=0 && b-k*t1/g>=0
     69         //t2/g > 0 a>=-k*t2/g ==> a*g/t2>=-k ==> -a*g/t2<=k
     70         //t2/g < 0 a>=-k*t2/g ==> a*g/t2<=-k ==> -a*g/t2>=k
     71         printf("a:%lld t1:%lld b:%lld t2:%lld g:%lld c:%lld
    ", a, t1, b, t2, g, c);
     72         LL mink, maxk, hasMink = false, hasMaxk = false;
     73         t1 /= g;
     74         t2 /= g;
     75         if (t2 >= 0)
     76         {
     77             hasMink = true;
     78             mink = divab(-a, t2);
     79         }
     80         else
     81         {
     82             hasMaxk = true;
     83             maxk = divab(-a, t2);
     84         }
     85         //t1/g > 0 ==> b >= k*t1/g ==> b*g/t1 >= k
     86         //t1/g > 0 ==> b >= k*t1/g ==> b*g/t1 <= k
     87         LL tmp = divab(b, t1);
     88         if (t1 >= 0)
     89         {
     90             if (hasMaxk)
     91                 maxk = min(maxk, tmp); //**************************若为负数要向小的数取整
     92             else
     93                 maxk = tmp, hasMaxk = true;
     94         }
     95         else
     96         {
     97             if (hasMink)
     98                 mink = max(mink, tmp);
     99             else
    100                 mink = tmp, hasMink = true;
    101         }
    102         //a+k*t2 + b - k*t1=a+b+k*(t2-t1)
    103         if (hasMaxk && hasMink && maxk < mink)
    104         {
    105             printf("-1
    ");
    106             continue;
    107         }
    108         printf("maxk:%lld hasMaxk:%lld mink:%lld hasMink:%lld
    ", maxk, hasMaxk, mink, hasMink);
    109         LL t = t2 - t1;
    110         if (t > 0)
    111         {
    112             if (hasMink)
    113             {
    114                 printf("%lld
    ", a + b + mink * t);
    115                 continue;
    116             }
    117             if (hasMaxk)
    118             {
    119                 printf("%lld
    ", a + b + min(maxk, 0LL) * t);
    120                 continue;
    121             }
    122         }
    123         else
    124         {
    125             if (hasMaxk)
    126             {
    127                 printf("%lld
    ", a + b + maxk * t);
    128                 continue;
    129             }
    130             if (hasMink)
    131             {
    132                 printf("%lld
    ", a + b + max(mink, 0LL) * t);
    133                 continue;
    134             }
    135         }
    136     }
    137     return 0;
    138 }
    AC代码,用拓展gcd算,很容易爆long long,边界处理时一不小心就出错,特别是算k的范围时,由于不是整除,如果是负数要取比这个数小一的数,中间输出未注释
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 int main()
     5 {
     6     LL t, x, y, p, q;
     7     cin >> t;
     8     while (t--)
     9     {
    10         cin >> x >> y >> p >> q;
    11         LL L = 0, R = 1e9;
    12         while (L < R)
    13         {
    14             LL mid = (L + R) >> 1;
    15             if (p * mid >= x && q * mid >= y && p * mid - x <= q * mid - y)
    16                 R = mid;
    17             else
    18                 L = mid + 1;
    19         }
    20         if (p * R >= x && q * R >= y && p * R - x <= q * R - y)
    21             printf("%lld
    ", q * R - y);
    22         else
    23             printf("-1
    ");
    24     }
    25     return 0;
    26 }
    二分AC代码
  • 相关阅读:
    C# 中 KeyPress 、KeyDown 和KeyUp的区别(转载)
    DataBinding的大用
    C#中的非托管资源释放(Finalize&Dispose)(转载)
    如何实现控件从IDE拖放到窗体上的效果?
    怎么在DataGridView中动态添加DateTimePicker列?
    电子表格(SpreadSheet)主要属性、方法和事件 原文:http://blog.csdn.net/zhangting1987/article/details/2065871
    C#利用KeyValuePair实现Dictionary的遍历方法
    Winform 打印报表
    vs2008 此安装不支持该项目类型
    WinForm里面使用多线程修改主线程上的一个Label的值
  • 原文地址:https://www.cnblogs.com/cdyboke/p/6826974.html
Copyright © 2011-2022 走看看