zoukankan      html  css  js  c++  java
  • stata固定效应

    对于面板数据,我们有多种估计方法,包括混合OLS、固定效应(FE)、随机效应(RE)和最小二乘虚拟变量(LSDV)等等。不过,我们最为常用的估计方法那自然还是固定效应(组内估计),固定效应模型的Stata官方命令是xtreg,但它有时候其实并没有那么好用(如对数据格式有要求,运行速度慢等),我们经常使用的固定效应估计命令还有regaregreghdfe

    xtreg

    xtreg,fe是固定效应模型的官方命令,使用这一命令估计出来的系数是最为纯正的固定效应估计量(组内估计量)xtreg对数据格式有严格要求,要求必须是面板数据,在使用xtreg命令之前,我们首先需要使用xtset命令进行面板数据声明,定义截面(个体)维度和时间维度。一旦在xtreg命令后加上选项fe,那就表示使用固定效应组内估计方法进行估计,并且默认个体固定效应定义在xtset所设定的截面维度上。至于时间固定效应,需要引入虚拟变量i.year来表示不同的时间。

    下面使用林毅夫老师(1992)的AER论文《Rural Reforms and Agricultural Growth in China》(中国的农村改革与农业增长)所使用的数据lin_1992.dta,给大家演示一下该命令的用法和估计结果。

    . xtset province year
           panel variable:  province (strongly balanced)
            time variable:  year, 70 to 87
                    delta:  1 unit
                    
    . xtreg ltvfo ltlan ltwlab ltpow ltfer hrs mci ngca i.year, fe vce(cluster province)
    
    Fixed-effects (within) regression               Number of obs     =        476
    Group variable: province                        Number of groups  =         28
    
    R-sq:                                           Obs per group:
         within  = 0.8932                                         min =         17
         between = 0.6596                                         avg =       17.0
         overall = 0.7156                                         max =         17
    
                                                    F(23,27)          =     949.82
    corr(u_i, Xb)  = -0.3425                        Prob > F          =     0.0000
    
                                  (Std. Err. adjusted for 28 clusters in province)
    ------------------------------------------------------------------------------
                 |               Robust
           ltvfo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           ltlan |   .5833594   .1745834     3.34   0.002     .2251439    .9415749
          ltwlab |   .1514909   .0585107     2.59   0.015     .0314368     .271545
           ltpow |   .0971114    .090911     1.07   0.295    -.0894225    .2836453
           ltfer |   .1693346   .0438098     3.87   0.001     .0794444    .2592248
             hrs |   .1503752   .0587581     2.56   0.016     .0298136    .2709368
             mci |   .1978373   .0810587     2.44   0.022     .0315186     .364156
            ngca |   .7784081   .4016301     1.94   0.063    -.0456688    1.602485
                 |
            year |
             71  |  -.0240404    .023366    -1.03   0.313    -.0719836    .0239027
             72  |  -.1323624   .0404832    -3.27   0.003    -.2154272   -.0492977
             73  |  -.0377336   .0357883    -1.05   0.301     -.111165    .0356979
             74  |   .0058554   .0500774     0.12   0.908     -.096895    .1086058
             75  |   .0096731   .0566898     0.17   0.866    -.1066448    .1259911
             76  |  -.0476465    .061423    -0.78   0.445    -.1736761    .0783832
             77  |  -.0869336   .0680579    -1.28   0.212    -.2265767    .0527096
             78  |  -.0325205   .0766428    -0.42   0.675    -.1897785    .1247376
             79  |  -.0076332   .0833462    -0.09   0.928    -.1786454     .163379
             81  |   -.093479   .1093614    -0.85   0.400    -.3178701    .1309121
             82  |  -.0447862   .1207405    -0.37   0.714    -.2925251    .2029528
             83  |  -.0309435   .1377207    -0.22   0.824     -.313523    .2516361
             84  |   .0442535   .1428764     0.31   0.759    -.2489048    .3374117
             85  |  -.0033372   .1561209    -0.02   0.983    -.3236709    .3169965
             86  |     .00484    .157992     0.03   0.976    -.3193329    .3290129
             87  |   .0386475   .1639608     0.24   0.815    -.2977723    .3750674
                 |
           _cons |   2.651286   .7738994     3.43   0.002     1.063376    4.239196
    -------------+----------------------------------------------------------------
         sigma_u |  .29344594
         sigma_e |  .09930555
             rho |  .89724523   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------

    reg

    通过在回归方程中引入虚拟变量来代表不同的个体,可以起到和固定效应组内估计方法(FE)同样的效果(已经被证明)。这种方法被称之为最小二乘虚拟变量方法(LSDV),一些教材和论文也把这种方法称之为固定效应估计方法。它的好处是可以得到对个体异质性[公式]的估计(FE是通过组内变换消去个体异质性[公式]),但如果个体[公式]很大,那么需要引入很多虚拟变量,自由度损失太多,还可能超出Stata所允许的解释变量个数。

    LSDV方法的Stata命令是reg i.id i.year,其中,id是个体变量,year是时间变量,reg命令对数据格式没有要求,因而使用起来更为灵活,只是会生成一大长串虚拟变量估计结果。

    . reg ltvfo ltlan ltwlab ltpow ltfer hrs mci ngca i.province i.year, vce(cluster province)
    
    Linear regression                               Number of obs     =        476
                                                    F(22, 27)         =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.9695
                                                    Root MSE          =     .09931
    
                                   (Std. Err. adjusted for 28 clusters in province)
    -------------------------------------------------------------------------------
                  |               Robust
            ltvfo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
            ltlan |   .5833594   .1800436     3.24   0.003     .2139404    .9527783
           ltwlab |   .1514909   .0603407     2.51   0.018      .027682    .2752998
            ltpow |   .0971114   .0937543     1.04   0.309    -.0952565    .2894792
            ltfer |   .1693346   .0451799     3.75   0.001     .0766331    .2620362
              hrs |   .1503752   .0605958     2.48   0.020      .026043    .2747075
              mci |   .1978373   .0835939     2.37   0.025     .0263169    .3693578
             ngca |   .7784081   .4141914     1.88   0.071    -.0714423    1.628259
                  |
         province |
         beijing  |  -.1865095   .1172887    -1.59   0.123     -.427166     .054147
          fujian  |   .0434646   .0473107     0.92   0.366    -.0536089    .1405381
           gansu  |  -.7945197   .1228202    -6.47   0.000    -1.046526   -.5425134
       guangdong  |  -.0278664   .0609608    -0.46   0.651    -.1529476    .0972149
         guangxi  |  -.2539549   .0614801    -4.13   0.000    -.3801015   -.1278082
         guizhou  |  -.2526439   .0598147    -4.22   0.000    -.3753736   -.1299142
           hebei  |   -.270106   .0948694    -2.85   0.008    -.4647619     -.07545
    heilongjiang  |  -.0926732     .26542    -0.35   0.730      -.63727    .4519237
           henan  |  -.0920743   .0396983    -2.32   0.028    -.1735284   -.0106201
           hubei  |   .1024438   .0368811     2.78   0.010     .0267701    .1781176
           hunan  |  -.0434275   .0581142    -0.75   0.461    -.1626679    .0758129
         jiangsu  |   .1153335   .0352061     3.28   0.003     .0430965    .1875705
         jiangxi  |  -.1401737   .0596644    -2.35   0.026    -.2625949   -.0177525
           jilin  |  -.1783839   .2109985    -0.85   0.405    -.6113171    .2545493
        liaoning  |  -.2517315   .1563399    -1.61   0.119    -.5725145    .0690515
         neimong  |  -.8860432   .2325209    -3.81   0.001    -1.363137   -.4089498
         ningxia  |  -.8489859   .1732579    -4.90   0.000    -1.204482     -.49349
         qinghai  |  -.6982553   .1268849    -5.50   0.000    -.9586017   -.4379089
         shaanxi  |   -.320607   .0887091    -3.61   0.001     -.502623   -.1385911
       shangdong  |   .0040812   .0547494     0.07   0.941    -.1082554    .1164177
        shanghai  |   .0864336   .0982642     0.88   0.387    -.1151878     .288055
          shanxi  |  -.5005347   .1388718    -3.60   0.001     -.785476   -.2155934
         sichuan  |   .0335563   .0392453     0.86   0.400    -.0469685    .1140811
         tianjin  |     -.3011   .1049208    -2.87   0.008    -.5163796   -.0858203
        xinjiang  |  -.3740561   .2053926    -1.82   0.080    -.7954869    .0473746
          yunnan  |  -.2854833   .0590488    -4.83   0.000    -.4066415   -.1643251
        zhejiang  |   .1615248   .0760427     2.12   0.043     .0054981    .3175515
                  |
             year |
              71  |  -.0240404   .0240968    -1.00   0.327     -.073483    .0254022
              72  |  -.1323624   .0417494    -3.17   0.004    -.2180251   -.0466998
              73  |  -.0377336   .0369076    -1.02   0.316    -.1134616    .0379945
              74  |   .0058554   .0516436     0.11   0.911    -.1001086    .1118193
              75  |   .0096731   .0584628     0.17   0.870    -.1102827     .129629
              76  |  -.0476465   .0633441    -0.75   0.458    -.1776178    .0823249
              77  |  -.0869336   .0701864    -1.24   0.226    -.2309442     .057077
              78  |  -.0325205   .0790398    -0.41   0.684    -.1946968    .1296559
              79  |  -.0076332   .0859529    -0.09   0.930    -.1839939    .1687275
              81  |   -.093479   .1127818    -0.83   0.414     -.324888    .1379301
              82  |  -.0447862   .1245167    -0.36   0.722    -.3002733     .210701
              83  |  -.0309435    .142028    -0.22   0.829    -.3223608    .2604739
              84  |   .0442535    .147345     0.30   0.766    -.2580735    .3465804
              85  |  -.0033372   .1610037    -0.02   0.984    -.3336895    .3270151
              86  |     .00484   .1629333     0.03   0.977    -.3294716    .3391516
              87  |   .0386475   .1690888     0.23   0.821    -.3082941    .3855891
                  |
            _cons |   2.874582   .7510459     3.83   0.001     1.333563    4.415601
    -------------------------------------------------------------------------------

    areg

    areg命令是对reg命令的改进和优化,其对数据结构也没有要求。有些时候我们想在回归中控制很多虚拟变量(i.id这种),但又不想生成虚拟变量,不想报告虚拟变量的回归结果,那么就可以使用areg命令,只需在选项absorb()的括号里加入你想要控制的类别变量就好。因此,我们也可以使用areg命令实现固定效应的估计,因为固定效应组内估计与LSDV效果是等价的。

    不过absorb()的括号里只能加一个变量,如果想要估计双向固定效应或是更高维度固定效应,那么就还是要使用使用i.var的方式引入虚拟变量。

    . areg ltvfo ltlan ltwlab ltpow ltfer hrs mci ngca i.year, absorb(province) vce(cluster province)
    
    Linear regression, absorbing indicators         Number of obs     =        476
    Absorbed variable: province                     No. of categories =         28
                                                    F(  23,     27)   =     893.08
                                                    Prob > F          =     0.0000
                                                    R-squared         =     0.9695
                                                    Adj R-squared     =     0.9659
                                                    Root MSE          =     0.0993
    
                                  (Std. Err. adjusted for 28 clusters in province)
    ------------------------------------------------------------------------------
                 |               Robust
           ltvfo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           ltlan |   .5833594   .1800436     3.24   0.003     .2139404    .9527783
          ltwlab |   .1514909   .0603407     2.51   0.018      .027682    .2752998
           ltpow |   .0971114   .0937543     1.04   0.309    -.0952565    .2894792
           ltfer |   .1693346   .0451799     3.75   0.001     .0766331    .2620362
             hrs |   .1503752   .0605958     2.48   0.020      .026043    .2747075
             mci |   .1978373   .0835939     2.37   0.025     .0263169    .3693578
            ngca |   .7784081   .4141914     1.88   0.071    -.0714423    1.628259
                 |
            year |
             71  |  -.0240404   .0240968    -1.00   0.327     -.073483    .0254022
             72  |  -.1323624   .0417494    -3.17   0.004    -.2180251   -.0466998
             73  |  -.0377336   .0369076    -1.02   0.316    -.1134616    .0379945
             74  |   .0058554   .0516436     0.11   0.911    -.1001086    .1118193
             75  |   .0096731   .0584628     0.17   0.870    -.1102827     .129629
             76  |  -.0476465   .0633441    -0.75   0.458    -.1776178    .0823249
             77  |  -.0869336   .0701864    -1.24   0.226    -.2309442     .057077
             78  |  -.0325205   .0790398    -0.41   0.684    -.1946968    .1296559
             79  |  -.0076332   .0859529    -0.09   0.930    -.1839939    .1687275
             81  |   -.093479   .1127818    -0.83   0.414     -.324888    .1379301
             82  |  -.0447862   .1245167    -0.36   0.722    -.3002733     .210701
             83  |  -.0309435    .142028    -0.22   0.829    -.3223608    .2604739
             84  |   .0442535    .147345     0.30   0.766    -.2580735    .3465804
             85  |  -.0033372   .1610037    -0.02   0.984    -.3336895    .3270151
             86  |     .00484   .1629333     0.03   0.977    -.3294716    .3391516
             87  |   .0386475   .1690888     0.23   0.821    -.3082941    .3855891
                 |
           _cons |   2.651286   .7981036     3.32   0.003     1.013713    4.288859
    ------------------------------------------------------------------------------

    备注:如果出现matsize too small

    set matsize 5000

    reghdfe

    reghdfe 主要用于实现多维固定效应线性回归。有些时候,我们需要控制多个维度(如城市-行业-年度)的固定效应,xtreg等命令也OK,但运行速度会很慢,reghdfe解决的就是这一痛点,其在运行速度方面远远优于xtreg等命令。reghdfe是一个外部命令,作者是Sergio Correia,有关这一命令的更多介绍详见github作者主页(),大家在使用之前需要安装(ssc install reghdfe)。

    reghdfe命令可以包含多维固定效应,只需 absorb (var1,var2,var3,...),不需要使用i.var的方式引入虚拟变量,相比xtreg等命令方便许多,并且不会汇报一大长串虚拟变量回归结果。

    . reghdfe ltvfo ltlan ltwlab ltpow ltfer hrs mci ngca, absorb(year province) vce(cluster province)
    (MWFE estimator converged in 2 iterations)
    
    HDFE Linear regression                            Number of obs   =        476
    Absorbing 2 HDFE groups                           F(   7,     27) =     229.56
    Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                      R-squared       =     0.9695
                                                      Adj R-squared   =     0.9658
                                                      Within R-sq.    =     0.6751
    Number of clusters (province) =         28        Root MSE        =     0.0994
    
                                  (Std. Err. adjusted for 28 clusters in province)
    ------------------------------------------------------------------------------
                 |               Robust
           ltvfo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           ltlan |   .5833594   .1745834     3.34   0.002     .2251439    .9415749
          ltwlab |   .1514909   .0585107     2.59   0.015     .0314368     .271545
           ltpow |   .0971114    .090911     1.07   0.295    -.0894225    .2836453
           ltfer |   .1693346   .0438098     3.87   0.001     .0794444    .2592248
             hrs |   .1503752   .0587581     2.56   0.016     .0298136    .2709368
             mci |   .1978373   .0810587     2.44   0.022     .0315186     .364156
            ngca |   .7784081   .4016301     1.94   0.063    -.0456688    1.602485
           _cons |   2.625513   .7307092     3.59   0.001     1.126221    4.124804
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            year |        17           0          17     |
        province |        28          28           0    *|
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation
    eghdfe y x, absorb(id year industry) 可以实现控制多维固定效应
    
    reghdfe y x, absorb(year#industry) 实现控制交乘固定效应
    
    reghdfe也可以同时对标准误进行聚类

    总结

    从表格展示的回归结果可以发现,xtregregaregreghdfe四个命令估计的系数大小是一致的,只是标准误会有略微差异。其中,xtregreghdfe命令估计得到的标准误是一致的,它们背后的估计方法是固定效应,而regareg命令估计得到的标准误是一致的,因为这两个命令背后的估计方法是特殊的混合OLS(LSDV方法)。

  • 相关阅读:
    ArrayList用法
    MessageBox
    将文本文件导入Sql数据库
    在桌面和菜单中添加快捷方式
    泡沫排序
    Making use of localized variables in javascript.
    Remove double empty lines in Visual Studio 2012
    Using Operations Manager Connectors
    Clear SharePoint Designer cache
    Programmatically set navigation settings in SharePoint 2013
  • 原文地址:https://www.cnblogs.com/celine227/p/14903449.html
Copyright © 2011-2022 走看看