zoukankan      html  css  js  c++  java
  • hdu1695 GCD 容斥原理

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.

     

    容斥原理的裸题

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 #include<math.h>
     5 using namespace std;
     6 typedef long long ll;
     7 
     8 const int maxn=2e5+5;
     9 
    10 int pnum[maxn][30],num[maxn];
    11 
    12 void init(){
    13     memset(pnum,0,sizeof(pnum));
    14     memset(num,0,sizeof(num));
    15     for(int i=2;i<=100100;++i){
    16         if(!num[i]){
    17             pnum[i][++num[i]]=i;
    18             for(int j=2;i*j<=100100;++j){
    19                 pnum[i*j][++num[i*j]]=i;
    20             }
    21         }
    22     }
    23 }
    24 
    25 int main(){
    26     init();
    27     int T;
    28     scanf("%d",&T);
    29     for(int q=1;q<=T;++q){
    30         int a,b,c,d,k;
    31         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    32         if(!k){
    33             printf("Case %d: 0
    ",q);
    34             continue;
    35         }
    36         a=b/k;b=d/k;
    37         if(a>b){c=a;a=b;b=c;}
    38         ll ans=0;
    39         if(a>=1)ans+=b;
    40         for(int p=2;p<=a;++p){
    41             ll res=0;
    42             for(int i=1;i<(1<<num[p]);++i){
    43                 int bit=0;
    44                 ll mul=1;
    45                 for(int j=1;j<=num[p];++j){
    46                     if(i&(1<<(j-1))){
    47                         ++bit;
    48                         mul*=pnum[p][j];
    49                     }
    50                 }
    51                 if(bit%2)res+=(b/mul-(p-1)/mul);
    52                 else res-=(b/mul-(p-1)/mul);
    53             }
    54             ans+=b-(p-1)-res;
    55         }
    56         printf("Case %d: %lld
    ",q,ans);
    57     }
    58     return 0;
    59 }
    View Code
  • 相关阅读:
    嵌入式linux问题杂锦
    QT creator 调试问题
    torcs代码
    ubuntu12.04安装KDevelop
    ubuntu12.04LTS安装以及卸载 QT4.8.6和QT creator2.5.2
    用vs2010编译vs2013建的工程
    mysql+matlab配置
    流形学习笔记
    可用的rtmp互联网地址
    信用卡术语
  • 原文地址:https://www.cnblogs.com/cenariusxz/p/6592259.html
Copyright © 2011-2022 走看看