package Queue; import java.util.*; import java.util.function.Consumer; /** * 双端队列主要实现list接口和Deque接口,实现了所有list操作,元素允许为null * 该实现是不同步的,not synchronized. * 可以使用 Collections.synchronizedList封装防止不同不的情况出现 * 即:List list = Collections.synchronizedList(new LinkedList(...)) * 该类中的迭代器使用快速失败模式:fail-fast,如果list在迭代器被创建之后的任意时间内被其他方法修改了结构, * (除了迭代器自己的remove()或add()方法),都是立刻报错 */ public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable { //定义了三个成员变量,链表元素个数的size,指向第一个元素的first,指向最后一个元素的last //队列中元素的个数 transient int size = 0; //永远指向链表中的第一个节点 transient Node<E> first; //永远指向链表中的最后一个节点 transient Node<E> last; //构造方法有两个,一个是构造一个空的链表,一个是根据已有的集合构造新的链表 //初始化空队列 public LinkedList() { } //根据已有的集合对象构造一个队列 public LinkedList(Collection<? extends E> c) { this();//调用空的初始化队列 addAll(c);//向空队列中添加所有初始化的元素 } //内部类,定义链表上的一个节点对象 //每个节点有三部分组成,中间的是节点自身的值,和指向链表前一个节点的指针prev,以及指向链表后一个节点的指针next private static class Node<E> { E item; Node<E> next; Node<E> prev; //初始化一个节点对象时,接收三个参数。指向前一个节点的指针,自己本身,和指向后一个节点的指针 Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } //移除指定元素,遍历链表,碰到第一个相等的就移除这个元素 public boolean remove(Object o) { //要移除元素为null的情况 if (o == null) { //遍历链表 for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x);//移除某个元素的具体实现 return true; } } //要移除元素不为null的情况 } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //移除一个节点的具体实现方法 E unlink(Node<E> x) { // assert x != null; //拿到本节点上的三个元素 final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; //处理前一个节点对下一个节点的指向 if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } //处理后一个节点对前一个节点的指向 if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } //向链表头部第一个位置添加一个元素 private void linkFirst(E e) { //保存first的引用 final Node<E> f = first; //根据传进来的元素e,构建一个新的节点,因为节点是放在头部第一个位置,所有prev=null //构建一个新的节点时,就直接指定了前一个,自己,后一个。 final Node<E> newNode = new Node<>(null, e, f); //把first指向新加入的一个元素 first = newNode; //处理原先第一个节点(现在已经时第二个了)对新节点的引用 if (f == null) last = newNode; else f.prev = newNode; size++; modCount++; } //向链表尾部最后一个位置添加一个元素 void linkLast(E e) { final Node<E> l = last; //构建一个新的节点 final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; } //在某个节点之前添加一个元素 void linkBefore(E e, Node<E> succ) { // assert succ != null; final Node<E> pred = succ.prev; final Node<E> newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; } //移除链表的第一个元素 private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; size--; modCount++; return element; } //移除链表的最后一个元素 private E unlinkLast(Node<E> l) { // assert l == last && l != null; final E element = l.item; final Node<E> prev = l.prev; l.item = null; l.prev = null; // help GC last = prev; if (prev == null) first = null; else prev.next = null; size--; modCount++; return element; } //仅仅查看链表中第一个节点的值,链表为null时,抛出异常 public E getFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return f.item; } ////返回链表中最后一个节点的值,链表为null时,抛出异常 public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } //从链表中删除并返回头部的第一个元素,如果链表为null,则抛出异常 public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } //从链表中删除并返回头部的第一个元素,如果链表为null,则抛出异常 public E removeLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return unlinkLast(l); } //在链表头部第一个位置上插入元素,没有返回值 public void addFirst(E e) { linkFirst(e); } //在链表尾部最后一个位置上插入元素,没有返回值 public void addLast(E e) { linkLast(e); } //检查链表是否包含某个值,返回布尔值 public boolean contains(Object o) { return indexOf(o) != -1; } //返回链表元素的个数 public int size() { return size; } //在链表尾部最后一个位置上插入元素,返回布尔值 public boolean add(E e) { linkLast(e); return true; } //向链表中追加指定集合中的所有元素 public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } //在指定位置开始追加指定集合内的所有元素 public boolean addAll(int index, Collection<? extends E> c) { //先检查指定位置的是否合法 checkPositionIndex(index); //把集合内的元素换成数组结构 Object[] a = c.toArray(); //检查数组的大小是否合法 int numNew = a.length; if (numNew == 0) return false; //定义两个节点变量 Node<E> pred, succ; //如果是从链表的最后开始添加 if (index == size) { succ = null; pred = last; //如果是从链表的中间开始添加 } else { //要是index开始添加,所有,index对应的节点需要后移 succ = node(index);//拿到处于index位置的节点 pred = succ.prev;//拿到index前一个节点 } //遍历数组的元素 for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; //根据数组的元素拿到构建新的节点,并指定前一个节点,因为后一个节点还不知道 Node<E> newNode = new Node<>(pred, e, null); if (pred == null) first = newNode; else //更新新加节点的下一个节点的指向 pred.next = newNode; //更改前一个节点,方便下一个循环的添加 pred = newNode; } //添加完数组内的元素,把其和原来的部分进行拼接 if (succ == null) { last = pred; } else { pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } //移除链表的所有元素 public void clear() { // Clearing all of the links between nodes is "unnecessary", but: // - helps a generational GC if the discarded nodes inhabit // more than one generation // - is sure to free memory even if there is a reachable Iterator //遍历,使所有的引用都指向null for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } // Positional Access Operations //返回指定索引号上的元素值 public E get(int index) { checkElementIndex(index); return node(index).item; } //对索引号上对应的节点的值进行修改 public E set(int index, E element) { checkElementIndex(index); Node<E> x = node(index); E oldVal = x.item; x.item = element; return oldVal; } //在指定位置添加一个节点 public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); else linkBefore(element, node(index)); } //删除并返回指定位置上的元素 public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } /** * Tells if the argument is the index of an existing element. */ private boolean isElementIndex(int index) { return index >= 0 && index < size; } /** * Tells if the argument is the index of a valid position for an * iterator or an add operation. */ private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //按索引号返回节点 Node<E> node(int index) { // assert isElementIndex(index); //如果索引值小于总数量的1/2,从头部开始遍历 if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; //如果索引值大于或等于总数量的1/2,从尾部开始遍历 } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } // Search Operations //返回指定元素在链表中第一次出现的索引号,若无则返回-1 public int indexOf(Object o) { int index = 0; //处理o为null和不为null的情况 if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } //返回指定元素在链表中最后一次出现的索引号,若无则返回-1 public int lastIndexOf(Object o) { int index = size; if (o == null) { //遍历查找的时候只需要倒序就可以,问题不大 for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } // Queue operations. //仅仅查看队列的第一个元素 public E peek() { final Node<E> f = first; return (f == null) ? null : f.item; } //仅仅查看链表中第一个节点的值,链表为null时,抛出异常 public E element() { return getFirst(); } //移除并返回链表头部的第一个元素 public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //从链表中删除并返回头部的第一个元素,如果链表为null,则抛出异常 public E remove() { return removeFirst(); } //在链表尾部最后一个位置上插入元素,返回布尔值 public boolean offer(E e) { return add(e); } // Deque operations //在链表头部第一个位置上插入元素,返回布尔值 public boolean offerFirst(E e) { addFirst(e); return true; } //在链表尾部最后一个位置上插入元素,返回布尔值 public boolean offerLast(E e) { addLast(e); return true; } //仅仅查看链表中第一个节点的值。不删除 public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } //仅仅查看链表中最后一个节点的值。不删除 public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } //移除链表的第一个元素 public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //移除链表的最后一个元素 public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } //栈操作,压入元素 public void push(E e) { addFirst(e); } //栈操作,弹出元素 public E pop() { return removeFirst(); } //移除指定元素,遍历链表,碰到第一个相等的就移除这个元素 public boolean removeFirstOccurrence(Object o) { return remove(o); } //移除链表中最后一个跟指定元素相同的元素 public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //返回一个从index开始到最后的ListIterator迭代器 public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } //内部类,迭代器的实现 private class ListItr implements ListIterator<E> { private Node<E> lastReturned; private Node<E> next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } public Iterator<E> descendingIterator() { return new DescendingIterator(); } //内部类,反序的迭代器 private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } //返回一个浅克隆对象 public Object clone() { LinkedList<E> clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } //返回一个包含此列表中所有元素的数组 //返回的数组是Object[]数组 public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } //以正确的顺序返回一个包含此列表中所有元素的数组(从第一个到最后一个元素); // 返回的数组的运行时类型是指定数组的运行时类型 public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream * (that is, serializes it). * * @serialData The size of the list (the number of elements it * contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } /** * Reconstitutes this {@code LinkedList} instance from a stream * (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } //并行迭代器 @Override public Spliterator<E> spliterator() { return new LLSpliterator<E>(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator<E> implements Spliterator<E> { static final int BATCH_UNIT = 1 << 10; // batch array size increment static final int MAX_BATCH = 1 << 25; // max batch array size; final LinkedList<E> list; // null OK unless traversed Node<E> current; // current node; null until initialized int est; // size estimate; -1 until first needed int expectedModCount; // initialized when est set int batch; // batch size for splits LLSpliterator(LinkedList<E> list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList<E> lst; if ((s = est) < 0) { if ((lst = list) == null) s = est = 0; else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } public long estimateSize() { return (long) getEst(); } public Spliterator<E> trySplit() { Node<E> p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) n = s; if (n > MAX_BATCH) n = MAX_BATCH; Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } public void forEachRemaining(Consumer<? super E> action) { Node<E> p; int n; if (action == null) throw new NullPointerException(); if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); } public boolean tryAdvance(Consumer<? super E> action) { Node<E> p; if (action == null) throw new NullPointerException(); if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }