zoukankan      html  css  js  c++  java
  • X^n+1=0上的FFT和IFFT(基2)——C语言实现

    我们一般意义上学习的FFT都是基于x^{n}-1=0的,即FFT中的单位根我们取的是left ( e	frac{2pi i}{n} 
ight ),但是在某些情况下我们需要x^{n}+1=0上的FFT和IFFT变换。

    1、直接想到的思路是把x^{n}-1=0的根替换成x^{n}+1=0的根。

    解法:x^{n}+1=0的根可以使用x^{2n}-1=0的2n个根中的奇数次根得到,即e	frac{2pi left ( 2i+1 
ight )}{2n},但是这种做法在FFT运算中可行,在IFFT逆运算下则不可行,我们一般的IFFT运算时把left ( e	frac{2pi i}{n} 
ight )替换成left (e 	frac{-2pi i}{n} 
ight ),并且最后除以一个n得到IFFT运算的结果。如下

     X(j)=sum_{k=0}^{N-1}A(k)W^{jk}

    A(j)=frac{1}{N}sum_{k=0}^{N-1}X(k)W^{-jk}   

     W=e	frac{2pi i}{N} , j=0,1,2,3,...N-1

    但是我们需要在x^{n}+1=0上做IFFT变换的时候不能简单的把根替换成e	frac{-2pi left ( 2i+1 
ight )}{2n},因为根据FFT的点值多项式的形式,只有根是left ( e	frac{2pi i}{n} 
ight )的形式的时候,才可以使用A(j)=frac{1}{N}sum_{k=0}^{N-1}X(k)W^{-jk}

    因为根是left ( e	frac{2pi i}{n} 
ight ) 的形式的时候,Dx=A,x=D^{-1}A,D^{-1}(w^{jk}) = frac{1}{N}D(w^{-jk})

    x^{n}+1=0上IFFT求逆的时候,D^{-1}(w^{jk}) = frac{1}{N}D(w^{-jk})不成立,直接替换根的做法是不可行的。

     

    2、新的做法,扩展到2n次

    设 n=2^{k},m = 2n,varphi (x) = x^{n} + 1,f(x)是n次多项式。

    x^{m} - 1 = (x^{n}+1)(x^{n}-1)

    令:l(x) = -frac{1}{2}(x^{n}-1)

    则有:l(x)mod(x^{n}+1) = 1,l(x)mod(x^{n}-1)=0

     

    FFT计算步骤:

    (1)计算F(x) = f(x)cdot l(x) = -frac{1}{2}f(x)cdot x^{n}+frac{1}{2}f(x)

    (2)此时F(x)是m次方的,计算F(x)在x^{m} - 1=0上的FFT(就是以前一般形式的FFT)

    (3)输出F(x) 的FFT变换之后的奇数项,即为f(x)在x^{n}+1=0上的FFT结果

     

    IFFT计算步骤:

    FFT(f(x))是f(x)在x^{n}+1=0上的FFT结果

    (1)将FFT(f(x))扩展,使其奇数项为FFT(f(x)),偶数项为0,扩展到2n次

    (2)使用2n阶IFFT求出扩展后多项式的逆变换的值

    (3)设(2)中逆变换对应的扩展多项式逆变换为f^{'}(x),令f^{'}(x) = a(x)+b(x)cdot x^{n}

    还原出来的n次f(x) = a(x)-b(x)

     

    大致整体思路就是扩展到2n次,然后使用x^{2n}-1=0上的FFT和IFFT求出x^{n}+1=0上的FFT和IFFT变换

    下面贴C语言代码:

    
    #include "pch.h"
    #define _CRT_SECURE_NO_WARNINGS
    #include "stdlib.h"
    #include "math.h"
    #include "stdio.h"
    
    
    #define N 8
    #define MAXN 100
    
    #define Pi  3.1415927   //定义圆周率Pi
    #define LEN sizeof(struct Compx)  //定义复数结构体大小
    
    //-----定义复数结构体-----------------------
    typedef struct Compx
    {
    	double real;
    	double imag;
    }Compx;
    
    //-----复数乘法运算函数---------------------
    struct Compx mult(struct Compx b1, struct Compx b2)
    {
    	struct Compx b3;
    	b3.real = b1.real*b2.real - b1.imag*b2.imag;
    	b3.imag = b1.real*b2.imag + b1.imag*b2.real;
    	return(b3);
    }
    
    //-----复数减法运算函数---------------------
    struct Compx sub(struct Compx a, struct Compx b)
    {
    	struct Compx c;
    	c.real = a.real - b.real;
    	c.imag = a.imag - b.imag;
    	return(c);
    }
    
    //-----复数加法运算函数---------------------
    struct Compx add(struct Compx a, struct Compx b)
    {
    	struct Compx c;
    	c.real = a.real + b.real;
    	c.imag = a.imag + b.imag;
    	return(c);
    }
    
    void fft(Compx *a, int n, int inv);
    void fft_1(Compx *a, int n, int inv);
    
    int main()
    {
    	int i;
    
    	int x[N] = { 0 }, y[N] = { 0 };
    
    	printf("
    N=%d
    ", N);
    	printf("
    输入两个多项式的系数,输入系数为N多项式长度的一半
    ");
    	printf("
    输入第一个多项式的系数
    ");
    	for (i = 0; i < N / 2; i++)
    	{
    		scanf("%d", &x[i]);
    	}
    
    	struct  Compx * a = (struct Compx *)malloc(N*LEN);			//为结构体分配存储空间
    	struct  Compx * b = (struct Compx *)malloc(N*LEN);
    	struct  Compx * c = (struct Compx *)malloc(N*LEN);
    	struct  Compx * F = (struct Compx *)malloc(2*N*LEN);
    
    	//初始化======================================= 
    	printf("
    a多项式初始化:
    ");
    	for (i = 0; i < N; i++)
    	{
    		a[i].real = x[i];
    		a[i].imag = 0;
    		printf("%.4f ", a[i].real);
    		printf("+%.4fj  ", a[i].imag);
    		printf("
    ");
    	}
    
    	/*--------------x^2n-1=0的解法----start----------*/
    	printf("
    --------------------------FFT---------------------------------
    ");
    	int m = 2 * N;
    	int n = N;
    	double f[2 * N] = { 0 };
    
    	for (i = 0; i < N; i++) {
    		f[i] = 0.5 * x[i];
    	}
    	for (i = N; i < 2*N; i++) {
    		f[i] = -0.5 * x[i-N];
    	}
    
    	printf("
    f多项式初始化:
    ");
    	for (i = 0; i < 2*N; i++)
    	{
    		F[i].real = f[i];
    		F[i].imag = 0;
    		printf("%.4f ", F[i].real);
    		printf("+%.4fj  ", F[i].imag);
    		printf("
    ");
    	}
    
    	fft(F, m, 1);
    	printf("
    F多项式FFT计算结果:
    ");
    	for (i = 0; i < 2*N; i++)
    	{
    		printf("%.4f ", F[i].real);
    		printf("+%.4fj  ", F[i].imag);
    		printf("
    ");
    	}
    
    	for (i = 0; i < N; i++ ) {
    		a[i] = F[2 * i + 1];
    	}
    
    
    	printf("
    --------------------------IFFT---------------------------------
    ");
    	fft(F, m, -1);
    	for (i = 0; i < m; i++) {
    		F[i].real = F[i].real / m;
    		F[i].imag = F[i].imag / m;
    	}
    	printf("
    F多项式IFFT计算结果:
    ");
    	for (i = 0; i < 2 * N; i++)
    	{
    		printf("%.4f ", F[i].real);
    		printf("+%.4fj  ", F[i].imag);
    		printf("
    ");
    	}
    
    	//F(x)的低次
    	double temp_low[N] = { 0 };
    	double temp_high[N] = { 0 };
    	for (i = 0; i < N; i++)
    	{
    		temp_low[i] = F[i].real;
    	}
    	for (i = N; i < 2*N; i++)
    	{
    		temp_high[i-N] = F[i].real;
    	}
    	double res[N] = { 0 };
    	for (i = 0; i < N; i++)
    	{
    		res[i] = temp_low[i] - temp_high[i];
    	}
    
    	printf("
    IFFT计算结果:
    ");
    	for (i = 0; i < N; i++)
    	{
    		printf("%.4f", res[i]);
    		printf("
    ");
    	}
    
    
    
    
    
    	/*--------------x^2n+1=0的解法----end----------*/
    
    	//fft_1(a, N, 1);
    
    	printf("
    第一个多项式FFT计算结果:
    ");
    	for (i = 0; i < N; i++)
    	{
    		printf("%.4f ", a[i].real);
    		printf("+%.4fj  ", a[i].imag);
    		printf("
    ");
    	}
    
    	return 0;
    }
    
    
    //x^n+1=0的FFT形式
    void fft_1(Compx *a, int n, int inv) {
    	if (n == 1)return;
    	int mid = n / 2;
    	static Compx b[MAXN];
    	int i;
    	for (i = 0; i < mid; i++) {
    		b[i] = a[i * 2];
    		b[i + mid] = a[i * 2 + 1];
    	}
    
    	for (i = 0; i < n; i++)
    		a[i] = b[i];
    	fft(a, mid, inv);
    	fft(a + mid, mid, inv);//分治
    	for (i = 0; i < mid; i++)
    	{
    		Compx x;
    		x.real = cos(2 * Pi*(2*i+1) / (2*n));
    		x.imag = inv * sin(2 * Pi*(2 * i + 1) / (2*n));
    
    		b[i] = add(a[i], mult(x, a[i + mid]));
    		b[i + mid] = sub(a[i], mult(x, a[i + mid]));
    	}
    	for (i = 0; i < n; i++)
    		a[i] = b[i];
    }
    
    //x^n-1=0的FFT形式
    void fft(Compx *a, int n, int inv) {
    	if (n == 1)return;
    	int mid = n / 2;
    	static Compx b[MAXN];
    	int i;
    	for (i = 0; i < mid; i++) {
    		b[i] = a[i * 2];
    		b[i + mid] = a[i * 2 + 1];
    	}
    
    	for (i = 0; i < n; i++)
    		a[i] = b[i];
    	fft(a, mid, inv);
    	fft(a + mid, mid, inv);//分治
    	for (i = 0; i < mid; i++)
    	{
    		Compx x;
    		x.real = cos(2 * Pi*i / n);
    		x.imag = inv * sin(2 * Pi*i / n);
    
    		b[i] = add(a[i], mult(x, a[i + mid]));
    		b[i + mid] = sub(a[i], mult(x, a[i + mid]));
    	}
    	for (i = 0; i < n; i++)
    		a[i] = b[i];
    }
  • 相关阅读:
    Hadoop(二)—— HDFS
    Hive(一)—— 启动与基本使用
    Flume(一) —— 启动与基本使用
    Kafka(四) —— KafkaProducer源码阅读
    Flink(一) —— 启动与基本使用
    Kafka(三) —— 集群监控
    Hadoop(一)—— 启动与基本使用
    Spark(二)—— 标签计算、用户画像应用
    二. python数组和列表
    一. python数据结构与算法
  • 原文地址:https://www.cnblogs.com/cg-bestwishes/p/11925800.html
Copyright © 2011-2022 走看看