zoukankan      html  css  js  c++  java
  • c#利用最小二乘法拟合任意次函数曲线(转)

    引用

    http://blog.sina.com.cn/s/blog_6e51df7f0100thie.html

    对代码稍作修改和注释,防止链接失效。

            ///<summary>
            ///用最小二乘法拟合二元多次曲线
            ///例如y=ax+b
            ///其中MultiLine将返回a,b两个参数。
            ///a对应MultiLine[1]
            ///b对应MultiLine[0]
            ///</summary>
            ///<param name="arrX">已知点的x坐标集合</param>
            ///<param name="arrY">已知点的y坐标集合</param>
            ///<param name="length">已知点的个数</param>
            ///<param name="dimension">方程的最高次数</param>
            public  double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension)//二元多次线性方程拟合曲线
            {
                int n = dimension + 1;                  //dimension次方程需要求 dimension+1个 系数
                double[,] Guass = new double[n, n + 1];      //高斯矩阵 例如:y=a0+a1*x+a2*x*x
                for (int i = 0; i < n; i++)
                {
                    int j;
                    for (j = 0; j < n; j++)
                    {
                        Guass[i, j] = SumArr(arrX, j + i, length);
                    }
                    Guass[i, j] = SumArr(arrX, i, arrY, 1, length);
                }
    
                return ComputGauss(Guass, n);
    
            }
            private  double SumArr(double[] arr, int n, int length) //求数组的元素的n次方的和
            {
                double s = 0;
                for (int i = 0; i < length; i++)
                {
                    if (arr[i] != 0 || n != 0)
                        s = s + Math.Pow(arr[i], n);
                    else
                        s = s + 1;
                }
                return s;
            }
            private  double SumArr(double[] arr1, int n1, double[] arr2, int n2, int length)
            {
                double s = 0;
                for (int i = 0; i < length; i++)
                {
                    if ((arr1[i] != 0 || n1 != 0) && (arr2[i] != 0 || n2 != 0))
                        s = s + Math.Pow(arr1[i], n1) * Math.Pow(arr2[i], n2);
                    else
                        s = s + 1;
                }
                return s;
    
            }
            private  double[] ComputGauss(double[,] Guass, int n)
            {
                int i, j;
                int k, m;
                double temp;
                double max;
                double s;
                double[] x = new double[n];
    
                for (i = 0; i < n; i++) x[i] = 0.0;//初始化
    
    
                for (j = 0; j < n; j++)
                {
                    max = 0;
    
                    k = j;
                    for (i = j; i < n; i++)
                    {
                        if (Math.Abs(Guass[i, j]) > max)
                        {
                            max = Guass[i, j];
                            k = i;
                        }
                    }
    
    
    
                    if (k != j)
                    {
                        for (m = j; m < n + 1; m++)
                        {
                            temp = Guass[j, m];
                            Guass[j, m] = Guass[k, m];
                            Guass[k, m] = temp;
    
                        }
                    }
    
                    if (0 == max)
                    {
                        // "此线性方程为奇异线性方程" 
    
                        return x;
                    }
    
    
                    for (i = j + 1; i < n; i++)
                    {
    
                        s = Guass[i, j];
                        for (m = j; m < n + 1; m++)
                        {
                            Guass[i, m] = Guass[i, m] - Guass[j, m] * s / (Guass[j, j]);
    
                        }
                    }
    
    
                }//结束for (j=0;j<n;j++)
    
    
                for (i = n - 1; i >= 0; i--)
                {
                    s = 0;
                    for (j = i + 1; j < n; j++)
                    {
                        s = s + Guass[i, j] * x[j];
                    }
    
                    x[i] = (Guass[i, n] - s) / Guass[i, i];
    
                }
    
                return x;
            }//返回值是函数的系数
    作者: cglnet
    本文版权归cglNet和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
  • 相关阅读:
    上周热点回顾(12.1212.18)
    上周热点回顾(11.2111.27)
    上周热点回顾(11.1411.20)
    博客园电子期刊2011年11月刊发布啦
    “CDN加速”测试
    上周热点回顾(11.2812.4)
    上周热点回顾(12.1912.25)
    上周热点回顾(12.512.11)
    提醒:安装MS11100 .NET Framework高危漏洞补丁一定要所有服务器一起安装
    郑州公积金
  • 原文地址:https://www.cnblogs.com/cglNet/p/2659257.html
Copyright © 2011-2022 走看看